
www.manaraa.com

Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

12-31-2006

Random feature subspace ensemble based approaches for the Random feature subspace ensemble based approaches for the

analysis of data with missing features analysis of data with missing features

Hussein Syed Mohammed
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Mohammed, Hussein Syed, "Random feature subspace ensemble based approaches for the analysis of
data with missing features" (2006). Theses and Dissertations. 910.
https://rdw.rowan.edu/etd/910

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=rdw.rowan.edu%2Fetd%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/910?utm_source=rdw.rowan.edu%2Fetd%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

www.manaraa.com

Random feature subspace ensemble based approaches for the analysis of data with

missing features

by

Hussein Syed Mohammed

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department: Electrical and Computer Engineering
Major: Engineering (Electrical Engineering)

Approved:

n Charge of Major ork

Members of the Committee

For the College

Rowan University
Glassboro, New Jersey

2006
© Hussein Syed Mohammed

www.manaraa.com

ABSTRACT

Hussein Syed Mohammed

RANDOM FEATURE SUBSPACE ENSEMBLE BASED APPROACHES FOR THE
ANALYSIS OF DATA WITH MISSING FEATURES

2006
Dr. Robi Polikar

Master of Science

Missing data in real world applications is not an uncommon occurrence. It is not unusual

for training, validation or field data to have missing features in some (or even all) of their

instances, as bad sensors, failed pixels, malfunctioning equipment, unexpected noise

causing signal saturation, data corruption, and so on, are all familiar scenarios in many

practical applications.

In this thesis, the feasibility of an ensemble of classifiers trained on a feature

subset space is investigated as an effective and practical solution for the missing feature

problem. Two ensemble of classifiers approach motivated by the Random Subspace

Method are proposed for supervised classifiers to handle data with missing features. A

sufficiently large number of classifiers are trained, each with a random subset of the

features. Those instances with missing features are then classified by a majority voting of

those classifiers whose training data did not include the missing features. The proposed

algorithm, Leamr+.MF, along with a modified version of this algorithm, Leam ++.MFv2,

are introduced in this effort. We also investigate the effect of varying the cardinality of

the random feature subsets on the classification performance, discuss the conditions

under which the proposed approaches are most effective, and present simulation results

on several benchmark datasets.

www.manaraa.com

ACKNOWLEDGEMENTS

I want to thank my family, especially my Mother and close relatives for their support,

concern and their pride in me. They have given me the freedom and independence to

pursue my interests and goals in life. Over the years they have amazed me with their

understanding, their dedication, and most importantly their kindness and patience.

Everything I am and everything I have accomplished I owe to them, and I sincerely thank

them for all their love and forever indebted to them.

I would like to thank the faculty at the Rowan University Electrical and Computer

Engineering Department for providing me with an opportunity to excel in my graduate

studies. Particularly, I would like to thank my advisor Dr. Robi Polikar for his belief and

faith in me. Additionally, I would also like to thank my committee members Dr.

Shreekanth Mandayam and Dr. Christopher Lacke. I also want to thank all my colleagues

and friends in the Graduate Student Office for their camaraderie and assistance. I also

want to make special thanks to the engineering clinic team for their endeavor and team

effort. I am indeed thankful for National Science Foundation's Grant Number ECS-

0239090 and support.

Finally, I want to sincerely thank God for allowing me to complete this chapter in

my life. I give praise and thanks for His everlasting mercy and grace that endures forever

and without which this thesis would not have been possible. Blessed be the name of the

God now and forever.

www.manaraa.com

TABLE OF CONTENTS

ACKNOWLEDGEMENTS...... . .. iii

TABLE OF CONTENTS...iv

LIST OF FIGURES ... vii

LIST OF TABLES .. x

CHAPTER 1- Introduction.. 1

1.1 THE MISSING FEATURE PROBLEM AND MOTIVATION..1

1.2 OBJECTIVES OF THESIS... 3

1.3 EXPECTED CONTRIBUTIONS 3

1.4 SCOPE AND ORGANIZATION 4

CHAPTER 2 - Literature Review.. 5

2.1 FILTERING METHOD... 5

2.2 BAYESIAN ESTIMATION.. 7

2.3 EXPECTATION MAXIMIZATION... 9

2.4 FEATURE REDUCTION .. 11

2.5 IMPUTATION TECHNIQUES.. 12

2.6 MAXIMUM LIKELIHOOD ESTIMATORS.. 15

2.7 D ECISION TREES .. 17

2.8 ONE-CLASS CLASSIFIERS ... 18

2.9 NEURAL NETWORK TECHNIQUES ... 19

2.10 AD-HOC MODEL APPROACH.. 21

iv

www.manaraa.com

CH APTER 3 - Background 22

3.1 ENSEMBLE SYSTEM .. 22

3.1.1 A dvantages of Ensem ble Based Approaches... 22

3.1.2 Diversity of Ensem ble Based Approaches... 23

3.2 ADABOOST.M 1 .. 27

3.2.1 AdaBoost.M 1 Explained.. 27

3.2.2 Advantages of AdaBoost.M 1 ... 29

3.2.3 Disadvantages of AdaBoost.M 1... 29

3.3 LEARN ... 30

3.3.1 Learn" Explained .. 30

3.3.2 Summary of Major Differences between AdaBoost.M1 and Learnm.......... 33

3.3.3 Recent Advances in Learn 33

3.3.4 Problem s of Learn 34

3.4 RANDOM SUBSPACE M ETHOD .. 34

3.4.1 Random Subspace M ethod Described.. 35

3.4.2 Advantages of RSM ... 36

CH APTER 4 - Approach .. 39

4.1 PRELIMINARIES .. 39

4.2 LEARN + .M F..40

4.3 M OTIVATION FOR LEARN ".M F 2 ... 46

4.4 LEARN ".M F v2.. 49

v

www.manaraa.com

CHAPTER 5 - Implementation and Results...57

5.1 TESTING PROCEDURE ... 57

5.2 DISCUSSION OF SIMULATION RESULTS.. 59

5.2.1 Volatile Organic Compound I Dataset... 61

5.2.2 Volatile Organic Compound II Dataset... 67

5.2.3 Ionosphere (ION) Dataset..72

5.2.4 W ine D ataset .. 76

5.2.5 Dermatology (DERMA) Dataset.. 81

5.2.6 Wisconsin Breast Cancer (WBC) Dataset... 86

5.2.7 W ater D ataset ... 91

5.2.8 Pen D igits D ataset.. 96

5.2.9 Optical Character Recognition Dataset.. 100

5.2.10 E -coli D ataset ... 104

5.3 SUMMARY OF LEARN .MF AND LEARN++.MFV2.. 108

5.3.1 Summary of Learnm .MF... 108

5.3.2 Summary of Leamrn .MFv2.. 108

5.4 EVALUATION OF LEARN".MF AND LEARN+ .MFv2.. 109

CHAPTER 6 - Conclusions...o.......................... 113

6.1 SYNOPSIS OF T HESIS... 113

6.2 SUMMARY OF ACCOMPLISHMENTS...114

6.3 RECOMMENDATIONS AND DIRECTIONS FOR FUTURE WORK 115

References...117

vi

www.manaraa.com

LIST OF FIGURES

FIGURE 1.1: TEST INSTANCE HAVING CORRUPT OR MISSING FEATURES CAUSED BY BAD

SEN SO R S ... 2

FIGURE 2.1: CASEWISE DELETION RESULTING IN N INSTANCES WHERE N < M 6

FIGURE 2.2: CASEWISE DELETION RESULTING IN NO CLASSIFIABLE INSTANCE WHEREBY ALL

INSTANCES ARE MISSING ONE OR MORE FEATURES MISSING 7

FIGURE 2.3: CLASS CONDITIONAL DISTRIBUTIONS FOR A FOUR CLASS PROBLEM [7]............ 8

FIGURE 2.4: PSEUDOCODE OF EM ALGORITHM .. 9

FIGURE 2.5: AN OVERVIEW OF THE EM ALGORITHM.. 11

FIGURE 2.6: PSEUDOCODE FOR NEAREST NEIGHBOR ALGORITHM..................................... 13

FIGURE 2.7: PSEUDOCODE FOR MEAN REPLACEMENT ALGORITHM 14

FIGURE 2.8: PSEUDOCODE FOR MODE REPLACEMENT ALGORITHM................................... 15

FIGURE 2.9: MAXIMUM LIKELIHOOD ESTIMATION... 16

FIGURE 2.10: PSEUDOCODE FOR THE TEST ALGORITHM ... 20

FIGURE 3.1: COMBINING CLASSIFIERS THAT ARE TRAINED ON DIFFERENT SUBSETS OF THE

TRAINING DATA ... 25

FIGURE 3.2: K-FOLD DATA SPLITTING FOR GENERATING DIFFERENT, BUT OVERLAPPING,

TRAINING DATASETS.. 25

FIGURE 3.3: CONCEPTUAL OVERVIEW OF ALGORITHM ADABoOST.M1 28

FIGURE 3.4: PSEUDOCODE OF ALGORITHM LEARN.. 32

FIGURE 3.5: PSEUDOCODE OF ALGORITHM RANDOM SUBSPACE METHOD.... 36

FIGURE 4.1: PSEUDOCODE OF ALGORITHM LEARN".MF... 43

FIGURE 4.2: BLOCK DIAGRAM OF ALGORITHM LEARN*.MF... 44

vii

www.manaraa.com

FIGURE 4.3: MINIMUM OUTPUT VARIANCE OF A CLASSIFIER...48

FIGURE 4.4: MAXIMUM OUTPUT VARIANCE OF A CLASSIFIER ... 48

FIGURE 4.5: PSEUDOCODE OF ALGORITHM LEARN*.MFv2... 52

FIGURE 4.6: BLOCK DIAGRAM OF ALGORITHM LEARN.MFv2 .. 53

FIGURE 5.1: EXAMPLE OF A FEATURE SPACE WITH 20 INSTANCES HAVING 8 FEATURES 58

FIGURE 5.2: EXAMPLE OF 10% FEATURE SPACE ARTIFICIALLY MISSING OR CORRUPT 58

FIGURE 5.3: EXAMPLE OF 20% FEATURE SPACE ARTIFICIALLY MISSING OR CORRUPT 58

FIGURE 5.4: LEARN".MF PERFORMANCE RESULTS ON VOC-I DATASET.......................... 65

FIGURE 5.5: LEARN".MFv2 PERFORMANCE RESULTS ON VOC-I DATASET 66

FIGURE 5.6: LEARN+.MF PERFORMANCE RESULTS ON VOC-II DATASET 70

FIGURE 5.7: LEARN .MFv2 PERFORMANCE RESULTS ON VOC-II DATASET 71

FIGURE 5.8: LEARN .MF PERFORMANCE RESULTS ON ION DATASET..............................74

FIGURE 5.9: LEARNW.MFv2 PERFORMANCE RESULTS ON ION DATASET 75

FIGURE 5.10: LEARN".MF PERFORMANCE RESULTS ON WINE DATASET..........................79

FIGURE 5.11: LEARN .MFv2 PERFORMANCE RESULTS ON WINE DATASET 80

FIGURE 5.12: LEARNW.MF PERFORMANCE RESULTS ON DERMA DATASET 84

FIGURE 5.13: LEARNW.MFv2 PERFORMANCE RESULTS ON DERMA DATASET 85

FIGURE 5.14: LEARN+.MF PERFORMANCE RESULTS ON WBC DATASET.......................... 89

FIGURE 5.15: LEARN".MFv2 PERFORMANCE RESULTS ON WBC DATASET 90

FIGURE 5.16: LEARN+.MF PERFORMANCE RESULTS ON WATER DATASET.................... 94

FIGURE 5.17: LEARNJ.MFV2 PERFORMANCE RESULTS ON WATER DATASET 95

FIGURE 5.18: LEARN*.MF PERFORMANCE RESULTS ON PEN DATASET........................... 98

FIGURE 5.19: LEARN*.MFv2 PERFORMANCE RESULTS ON PEN DATASET....................... 99

viii

www.manaraa.com

FIGURE 5.20: LEARN .MF PERFORMANCE RESULTS ON OCR DATASET 102

FIGURE 5.21: LEARN .MFv2 PERFORMANCE RESULTS ON OCR DATASET 103

FIGURE 5.22: LEARN .MF PERFORMANCE RESULTS ON ECOLI DATASET....................... 106

FIGURE 5.23: LEARN .MFV2 PERFORMANCE RESULTS ON ECOLI DATASET................... 107

ix

www.manaraa.com

LIST OF TABLES

TABLE 5.1: DATA DISTRIBUTION FOR ALL DATASETS EVALUATED..................................... 60

TABLE 5.2: NUMBER OF FEATURES (NOF) AND NUMBER OF CLASSIFIERS (T) USED FOR EACH

D A TA SET .. 60

TABLE 5.3: LEARN".MF AND LEARN+.MFv2 PERFORMANCES ON THE VOC-I DATASET 63

TABLE 54: LEARN .MF AND LEARN.MIFv2 PERFORMANCES ON THE VOC-II DATASET

... 6 9

TABLE 5.5: LEARN".MF AND LEARN*.MIFv2 PERFORMANCES OF THE ION DATASET 73

TABLE 5.6: LEARN+.MF AND LEARNW.MFv2 PERFORMANCES ON THE WINE DATASET.. 78

TABLE 5.7: LEARN+.MF AND LEARNW.MFv2 PERFORMANCES ON THE DERMA DATASET

... 8 3

TABLE 5.8: LEARN".MF AND LEARNW.MFv2 PERFORMANCES OF THE WBC DATASET.. 88

TABLE 5.9: LEARN".MF AND LEARNW.MFv2 PERFORMANCES ON THE WATER DATASET

... . 93

TABLE 5.10: LEARN .MF AND LEARNW.MFv2 PERFORMANCES ON THE PEN DATASET . 97

TABLE 5.11: LEARN .MF AND LEARNW.MFv2 PERFORMANCES ON THE OCR DATASET

.. 10 1

TABLE 5.12: LEARNW.MF AND LEARN".MFv2 PERFORMANCES ON THE ECOLI DATASET

.. . 10 5

x

www.manaraa.com

CHAPTER 1 - INTRODUCTION

1.1 The Missing Feature Problem and Motivation

Many pattern recognition professionals and statisticians often face the problem of

missing or corrupt data in their field of work. There can be different levels of missing

values, from a single value in a few observation vectors, to almost all features for all

observations. They can occur either randomly or systematically, in certain patterns or

independently from each other. Their distribution might be different in training and test

data sets; the training set might be complete and missing values occur only in test data.

Furthermore, the missing data values might complicate the analysis of the data, if the

classification algorithm cannot cope with such values.

Many classification algorithms, including most standard neural network

architectures, require that the number and nature of the features be set prior to the training

phase. Since the underlying operation for most classifiers in a neural network is a matrix

multiplication, instances missing even a single feature cannot be processed by such

classifiers, due to the missing number(s) in the vectors/matrices to be multiplied. Hence,

the field or test data to be evaluated by the classifier must contain exactly the same set

and number of features as the training data used to create the neural network to make a

valid classification.

Missing data in real world applications is a common occurrence. It is not unusual

for training, validation or field data to have missing features in some (or even all) of their

instances, as bad sensors, failed pixels, malfunctioning equipment, unexpected noise

causing signal saturation, data corruption, etc. are familiar scenarios in many practical

www.manaraa.com

applications. To make matters worse, different instances of the data may be missing

different features, particularly if all of the data are not acquired at the same time, at the

same location, or using the same equipment, etc. An example is illustrated in Figure 1.1,

(for a handwritten character recognition problem), where the characters are digitized on

an 8x8 grid (creating 64 features, fl ~ f64), and about 20% of pixel values are missing.

I I
LI q I I I f631 641

Figure 1.1: Test instance having corrupt or missing features caused by bad sensors

In most practical applications, it is often expensive, impractical or even

impossible to recreate the database, demonstrating the need for a practical and robust

solution to the missing feature problem.

2

fl f2

www.manaraa.com

1.2 Objectives of Thesis

The main objectives of this thesis are:

1. To implement an ensemble approach based on the Random Subspace Method for

the feasibility of the Missing Feature Problem.

2. To study the effects of using such a method for the Missing Feature Problem on

multiple real world applications and benchmark datasets.

3. To investigate the effects of the algorithm's free parameters (i.e. number of

features) on its performance.

4. To investigate modifications to the Learn .MF to attempt to boost its

performance using established techniques such as weighted combination rules.

5. To study the effects of using the modified algorithm, along with its free

parameters and compare the performance on the same datasets.

1.3 Expected Contributions

This thesis describes two algorithms for handling the missing feature problem common in

datasets. The illustration of each algorithm, along with their results on multiple datasets

will be used to demonstrate their potential as possible solutions to the missing feature

problem.

3

www.manaraa.com

1.4 Scope and Organization

The scope of this thesis examines the feasibility of using two ensemble techniques based

on the random selection of features for the classification of instances with missing

features in datasets. The organization of the rest of this thesis is divided into the

following chapters:

Chapter 2 provides a literature review of previous techniques used to solve or

handle the problem of missing features and values in datasets.

Chapter 3 provides the necessary background for the techniques used in

accomplishing the thesis objectives. This includes a general taxonomy on ensemble-

based systems, including a detailed description of two boosting based ensemble

approaches, AdaBoost.M1 and Leamr", and as well as the Random Subspace Method.

Chapter 4 provides an explanation of the proposed approach, assumptions, and

techniques used to accomplish the outlined objectives. The methodology for the

algorithm Leam *.MF is presented first, along with motivation for improving upon this

algorithm. This is followed by the methodology of the second version of this algorithm,

Learnm++.MFv2 and its necessary modifications.

Chapter 5 presents the results obtained by the algorithms Learnm.MF and

Leamn.MFv2 on several real world applications and benchmark datasets. Finally, a

study and comparison of the algorithms is performed.

Chapter 6 provides a summary of accomplishments, conclusions from this work,

and recommendations for future work.

www.manaraa.com

CHAPTER 2 - LITERATURE REVIEW

Missing values occur in many real-world problems, and there has been a growing library

of publications dealing with missing data, indicating the increase in the seriousness and

importance of the matter. However, the problem of dealing with missing values in

practical applications is often dealt in an ad hoc basis and not reported in literature. The

issue of missing values has been studied extensively in the statistical and machine

learning community. Rubin further divides the case of missing values into three data

mechanisms: Missing Completely At Random (MCAR), Missing At Random (MAR) and

Non-ignorable. MCAR is when the probability of missing a value is the same for all

variables, MAR is when the probability of missing a value is only dependent on other

variables, and Non-ignorable describes the probability of missing a value is dependent on

the value of the missing variable.

In this chapter, a short review of the terminology and many of the standard

methods is given. The methods presented include the most prominent and established in

literature, along with recent developments used to solve or counter the missing feature

problem.

2.1 Filtering Method

A pragmatic approach known as casewise deletion is often used to handle the missing

data is to ignore or delete those instances with missing features. This filtering method

(see Figure 2.1) is generally the most conservative and the easiest to carry out. Its

advantages are its simplicity and need for minimal computational time. It is, however,

unsatisfactory for dealing with large amounts of missing data. It is often common for

www.manaraa.com

many practical problems where the instances that remain after deletion are too few to

effectively capture the relevant statistics (See Figure 2.2). This simple, but brute-force

approach is not only suboptimal - as discarded data may still carry important information

- but it may not even be practical or efficient, if all instances are missing one or more

features. Variations of this method also include the listwise and pairwise deletion.

Figure 2.1: Casewise deletion resulting in n instances where n < m

6

1 2 3 m instancesi ^ ^ c. . instances

F1
F2
F3

F4

F5 features

1 2 n instances

F1l
F2
F3

F4
F5 features

www.manaraa.com

1 2 3. m
instances

F1
F2
F3
F4
F5 features

I

Figure 2.2: Casewise deletion resulting in no classifiable instance whereby all instances are
missing one or more features missing

2.2 Bayesian Estimation

Several theoretical and heuristic methods have been proposed for the missing feature

problem. Many of them rely on estimation techniques, such as Bayesian estimation [1,2]

for extracting "class probabilities". We illustrate a simple case of missing features from a

distribution of four classes in Figure 2.3. In Figure 2.3 below we show that feature xj is

A

missing and the measured value of feature X2 is x2 . If we assume that the missing value

can be substituted as the mean of all the x, (i.e. x), then we might pick 03. However, if

the prior probabilities are equal, then 02 would make a better decision since it has the

Alargest likelihood p(2 2)largest likelihood p(X2 |(02).

7

I I I~ III ·-- c-I II I - II II I s I

I I _ LI I I I I I-·

www.manaraa.com

x2

4

A

X2

(02
fOji (0)4

xl

x 1.
Figure 2.3: Class conditional distributions for a four class problem [7]

In terms of a set of existing features, the posteriors are

J, I gf(x)p(x)dxb (2.1)
P((oj;kg)==---

P (co\p xx) Jp(x)dxb

where Xb indicates the bad or missing features, Xg indicates the good or present features,

and gi(x) is the discriminant function. In short, equation (2.1) presents the integrated,

marginalization of the posterior probability over the missing features. Hence, if one

knows the full probability structure of the problem, one can construct a Bayes decision

rule. Equation (2.2) below shows the Bayes descision rule being used on the resulting

posterior probabilities, which is to choose the class with the largest posterior probability.

P(cowiIxg) > P(cojIxg) for all i and j (2.2)

A major setback for this method is that it requires access to a dense data

distribution for it to be able to approximate the missing values. Furthermore, it also

requires specifying a prior distribution for all unknown parameters. But, in many cases,

II--c--· i II Il I i I

II CL.

VAi

w ý ý ý ý =NM ý

I -- ------------------------------ --- --------------------------- lk-- I- - --------- ~--------- - --- --·

www.manaraa.com

prior knowledge is either vague, or non-existent, which often makes it very difficult to

specify a useful prior distribution.

2.3 Expectation Maximization

Another alternative strategy for computing incomplete data problems is the Expectation

Maximization (EM) algorithm [3,4,5]. The EM Algorithm is an iterative procedure to

find the maximum likelihood estimates of parameters or the posterior mode of parameters

in a model. The algorithm augments the observed data with latent data, which can be

either missing data or parameter values, so that the likelihood function conditioned on the

data and the latent data has a form that is easy to analyze.

A main advantage of the EM algorithm lies in its theoretical simplicity. It consists

of two iterative steps, the E step (expectation step) and M step (maximization step),

which update class conditional probabilities such that they are maximized over existing

data. These steps are often easy to construct conceptually.

Figure 2.4: Pseudocode of EM algorithm [7]

Figure 2.4 shows the pseudocode of the EM algorithm. We define 0 as the model

parameter, 8 as our preset convergence criterion, and k as the number of intended

iterations until convergence is met.

9

1. Begin Initialize 00, 3, k<-0
2. Dok<--k+1
3. E step: Q(0)
4. Mstep: - argmax 0 Q(09;)

5. Until Q(01;) - Q(9, a) < 3
A

6. Return +-0 k9

7. End

www.manaraa.com

The EM algorithm consists of choosing an initial 0[k]. The E step finds the

conditional expectation of the missing data, given the observed data y and the current

estimated parameter 0 and substitutes this value for the missing data. The M step then

performs the maximum likelihood of 0. The EM algorithm alternates between performing

the E step, which computes the expected value of the latent variables, and the M step,

which computes the maximum likelihood estimates of the parameters given the data and

setting the latent variables equal to their expectations. In this iterative two step procedure,

the algorithm alternates between the E step and the M step until the parameter has

converged or there is no change in the estimate.

Meng and Pedlow have shown that the range of problems that can be handled by

the EM algorithm is very broad [6]. However, there are two major drawbacks to the EM

algorithm. First, large fractions of missing information can dramatically lower the

convergence rate. Next, the M step can be difficult (i.e. has no closed form), which

prohibits the theoretical simplicity of the algorithm from converting to practical

simplicity [18]. Despite its optimality, this technique, like the former, requires either prior

knowledge that is often unavailable, or the estimation of underlying distributions, which

can be computationally prohibitive, particularly for large dimensional datasets.

10

www.manaraa.com

Figure 2.5: An overview of the EM algorithm

2.4 Feature Reduction

The problem with missing features deals with having a lack of features. However, Duda

et al. has also shown that addition of features above a certain point may lead to a higher

probability of error [7]. By selecting only discriminative features, one lowers the

likelihood of having to deal with more missing features as the set of features under

consideration is reduced. Therefore, an effective feature selection strategy is needed to

reduce the dimensionality of the feature space and to identify the relevant features to be

used for classification.

11

I - I · L I I I I

~ I II I II I·

www.manaraa.com

Another alternative for reducing the dimensionality of the dataset requires

searching for an optimal subset of features so that fewer features are required [8]. This

method may include evaluating every subset of features by training a classifier with a

subset of the total available features and to select the subset that provides the best

performance. While it is conceptually simple, optimal feature selection can be difficult,

primarily because of its computational complexity. The optimization space of all the

subsets of a given cardinality is subject to combinatorial explosion. An exhaustive search

is often computationally intensive, making it impractical even for a relatively small

number of features.

Search algorithms that avoid an exhaustive search include the depth-first search

[9], breadth-first search [10], as well as the hill climb search [11]. Each algorithm comes

with its own limitations. The Branch and Bound algorithm strives to reduce to the

computational burden. However, the problem still remains if any of these optimal

features are missing. Since the rest of the features (which may still be discriminative) are

ignored, useful information hidden in these features is not taken into consideration. This

may result in a poor performance on the selected feature subset.

2.5 Imputation Techniques

Many missing data methods fall under the general heading of imputation. The simplest

method includes substituting the missing value with an educated guess and then to

proceed as if there were no missing data. The assumption that one can impute a dummy

or default value oversimplifies the problem and does not work well in general. Imputation

often requires prior knowledge about the data distribution which is not readily or easily

available.

12

www.manaraa.com

A simple method used to replace missing values is the Nearest Neighbor

Estimator. This method will find the nearest neighbor instance that includes no missing

features. Secondly, it fills up missing values of this instance by corresponding values of

the nearest neighbor instance. To estimate the distance between an instance containing

missing values and other instances, one can use the Euclidean distance. A simple

implementation of this can be found in below in Figure 2.6.

Figure 2.6: Pseudocode for Nearest Neighbor Algorithm

There are variations of the above mentioned method. Morin [12] proposed to

replace the missing features by values of these features from their k nearest neighbors

(KNN). Another KNN-based method selects instances with profiles similar to the

instance(s) of interest to impute missing values, taking into account the similarity of the

instances [13,14]. One attraction of these KNN-based techniques is that they consider the

correlation structure of the data. However, a major disadvantage of this data imputation

method is the time required for searching through the entire dataset looking for the most

similar instances. The choice of k (i.e. the number of neighbors), is critical, and small

13

For each instance xi that has missing values

For each instance , that has no missing values

Calculate Euclidean distance dy between xiand xj

dg= -xk f 2,j wheref is the number ofnon-missing features

Decide the nearest instance xn and replace each missing value in xi by the

corresponding value in xs

www.manaraa.com

values of k have been known to produce a deterioration in the performance of the

classifier. On the other hand, a large k may include instances that are significantly

different from the instance containing the missing features. Hence, a large k can also

severely affect the classifier performance.

Variations of imputation method also include the mean and mode substitution

[15]. Like many of the imputation methods mentioned above, these also require that the

available training data be sufficiently dense, a requirement often not satisfied for large

dimensional data. Normally, mean imputation is used for attributes whose values are

numeric and mode imputation is used for values that are symbolic. However, in a dense

numeric distribution, one could also use the mode imputation technique for missing

values. The substitution method artificially reduces the variance of the dataset. It also

diminishes relationships with other variables. Hence, as the proportion of missing data

increases, this method tends to produce biased estimates, so it generally should be

avoided. We show the pseudocode for both the mean and mode replacement algorithms

below.

Figure 2.7: Pseudocode for Mean Replacement Algorithm

14

For each numeric attribute xi that has missing values

1. Calculate the mean of the non-missing values
I

i1

where m is the number of non-missing values for that particular
attribute

2. Replace the missing vahlite by the calculated vahle, /I

I

www.manaraa.com

Figure 2.8: Pseudocode for Mode Replacement Algorithm

There are also implicit modeling techniques that can be used to handle missing

data. These include hot deck [16] and cold deck [17] imputation methods. In hot deck

imputation, the missing values are replaced by values from similar units in the sample,

whereas in the latter, the missing value is replaced by a constant value from an external

source, normally a previous data collection. The methods are attractive due to their

simplicity. However, these methods may introduce bias and in the case of the latter

method, a large variance.

2.6 Maximum Likelihood Estimators

There are also more classical methods that use linear regression to estimate substitutes for

missing feature values [18,19]. Maximum Likelihood (ML) is a general approach to

statistical estimation that is widely used to handle many otherwise difficult estimation

problems. Maximum likelihood based methods assume that the value to be estimated

comes from a distribution with a known form, but unknown parameters. ML estimators

seek solutions that best explain the observed data. The problem then reduces to a function

minimization/maximization problem, whose solution techniques are well known.

15

For each symbolic attribute x, that has missing values

a. Count the number of times each value appears
b. Replace the missing value by the value that appears the most (mode)

www.manaraa.com

Figure 2.9: Maximum Likelihood Estimation

ML estimators have a number of desirable properties. Maximum likelihood

methods are often preferred because they are computationally less intensive, and require

merely differential calculus techniques (e.g. first and second order moments) or a simple

gradient search. Under a fairly wide range of conditions, they are known to be

asymptotically efficient. Efficiency implies that the true standard errors are at least as

small as the standard errors for any other consistent estimator [20]. However, the former

is only approximately true as approximation gets better with a denser distribution.

Problems of ML estimation also include choosing the model family which often requires

making assumptions about the model to begin with. Little [19] has shown that many of

such methods are inconsistent as they are dependent on the data distribution. Hence if the

model family is not chosen appropriately, even the best or maximized likelihood estimate

will not fit the data well.

16

P(xIO)

0

9i

I ii Il I I rr

Il I I I I -_

www.manaraa.com

2.7 Decision Trees

Zhang et.al has studied the cost of missing values in cost sensitive decision trees [21]. He

describes three methods; Known Value Strategy (KVS), Null Strategy (NS), Internal

Node and Strategy (INS). The KVS was proposed in [22] and utilizes only the known

values in the tree building for each test example. For each test example, a new decision

tree is built from the training examples with only those attributes whose values are known

in the test example. This strategy utilizes all known attributes, but it clearly avoids any

missing data directly. It is a lazy tree method where a tree is built during test process. A

major drawback of KVS is the relatively high computation cost as new decision trees

may have to be built for different test instances that differ in their missing attributes.

However, this is generally not a problem if the tree building algorithm is efficient. One

can also develop a template for testing test examples with the same subsets of known

attributes since the decision trees for the same subsets of known attributes are similar.

The NS assigns a special value, often called "null" in databases, to the missing

value. The null value is then treated just as a regular known value in the tree building and

test processes. There are multiple problems with this using this strategy. One drawback is

that it does not utilize known values as missing values are treated equally as a known

value. Furthermore, there can also be more than one situation where values are missing.

Hence, replacing all missing values by a single value may not be adequate. In addition,

the subtrees can be built under the "null" branch. This potentially suggests that the

unknown values are more discriminating than the known values. Simply, it is inadequate

to replace all missing values by a single value.

17

www.manaraa.com

The INS method keeps examples with missing values in internal nodes and does

not build branches for them during tree building. Instead, when the tree encounters an

attribute whose value is unknown during testing, the class probability of training

examples occurring at the internal node is used to classify it. There might be many

different situations where the attributes are missing, warranting the classification to be

dealt by the internal nodes. This strategy is efficient compared to the KVS as only one

tree is built for all test examples.

2.8 One-Class Classifiers

Juszczak and Duin [23] have recently shown that missing data can be addressed by

combining one-class classifiers (occs) trained on a single dimension feature. The

approach is capable of handling any combination of missing features, with the fewest

classifiers possible.

In one-class classification, one class of data, called the target class, has to be

distinguished from the rest of the feature space. It is assumed that only examples of the

target class are available. Objects not originating from the target set, by definition are

referred to as outlier objects. A threshold is set on the tails of the estimated probability

such that a specified amount of the target data is rejected. In one-class classification, the

target class is modeled such that P(xcoTc) is the probability that object x belongs to target

class.

Each classifier is trained on one attribute at a time belonging to the target class.

Hence, the total number of classifiers that need to be trained is C*F, where F is the

number of features and C is the number of classes. The authors use the one-class

classifiers as base classifiers to combine using a variety of fixed combination rules which

18

www.manaraa.com

include the mean, product and max rules. Equations 23-2.5 show to use the occs

algorithm on the missing feature problem on the above mentioned combination rules,

where F is the number of available features.

argmax[FP(x, |)] (2.3)
c i=1

argmax[fP(x) (2I)

Cc i=1

argmax[max P(xi OT)] (2.5)
C

Since a single feature xi is considered at a time during classification, feature

interactions are neglected. This can lower the performance of the ensemble. The authors

show that the classifiers that are trained on a single feature at a time may not carry

enough discriminative information, so the algorithm may often fail to achieve satisfactory

classification performance.

2.9 Neural Network Techniques

Gupta and Lam have studied the effect of the neural network weight decay method on

data sets with missing values [24]. Similar to the previous techniques, they reconstruct

missing values using three different methods: iterative multiple regression, mean and zero

replacement. However, their experimental results also show that the higher the

percentage of missing values within a dataset, the higher the differential effects from

reconstruction methods.

Yoon and Lee provide another algorithm for MILPs to handle missing features.

Their Training-EStimation-Training (TEST) algorithm is designed not to make any

assumptions about the underlying distribution of the missing inputs [25]. Unlike other

19

www.manaraa.com

training methods with missing data, it does not assume data distribution models. The

authors have also shown that the TEST algorithm may not be appropriate for small

training data.

Figure 2.10 provides the pseudocode for the TEST algorithm. This neural network

algorithm uses back propagation algorithm to deal with missing values. Firstly, the

network learns from instances that have no missing values. The network is trained to

duplicate or replicate all of the inputs as outputs using back propagation. Secondly,

during testing or validation, when the missing values are detected, the network is used in

back propagation mode, so that the internal weights of the network are not adjusted. In

this manner the error is propagated all the way back to the inputs. At the input level, an

appropriate weight can be derived for the missing values so that it least affects or disturbs

the internal structure of the trained network.

Figure 2.10: Pseudocode for the TEST Algorithm

20

1. Create a neural network with arbitrary weight.

2. For each instance that has no missing values x,,, learn the network such
that all the input values and output values are approximately the same by
back propagation.

3. For each instance that has missing values x,,,
1. Input values of the instance
2. If the input values and outputs are not the same, repeat (a). Else the

output values are used as input values
3. Replace missing values by the output of the network

www.manaraa.com

2.10 Ad-Hoc Model Approach

The original data split into smaller data set, according to the pattern of known features

[26]. Each data set is then analyzed or learned as a complete data set. Predictions are then

made using a model suitable to the test instance missing those features. Whilst this

method is conceptually simple, it suffers from the combinatorial explosion of models to

learn large feature spaces with many missing value patterns. At the same time, this

approach faces the common problem of having insufficient data to reliably learn from.

Furthermore, the question arises, how to combine models and predictions, if more than

one model could be suitable for any given case.

21

www.manaraa.com

CHAPTER 3 -BACKGROUND

This chapter is split into four major sections. Section 3.1 gives a general background on

ensemble based systems. Section 3.2 gives a brief outline on the boosting based

algorithm, AdaBoost.M1. Section 3.3 discusses the algorithm Learn+, an incremental

learning based algorithm motivated by the former algorithm. Section 3.4 describes the

Random Subspace Method (RSM), a technique that is core to the algorithms introduced

later in this thesis.

3.1 Ensemble System

The integration of ensemble systems to improve classification performance is currently

an active research area in machine learning and pattern recognition communities.

Ensemble systems, also known under various other names, such as multiple classifier

systems (MCS), committee of classifiers or mixture of experts, ensemble systems have

shown to produce favorable results compared to those of single expert systems for a

broad range of applications, and under a variety of scenarios which include mail sorting,

medical test reading and diagnostics, military target recognition, signature verification, to

name a few [27]. Ensemble based systems lend themselves to other useful application,

including data fusion, where the goal is to extract complementary pieces of information

from different data sources, and make a more informed decision about the phenomenon

generating the underlying data distributions [28].

3.1.1 Advantages of Ensemble Based Approaches

Many ensemble of classifiers based approaches have been well researched, and hence are

now well-established, for improving classifier accuracy and robustness over single

22

www.manaraa.com

classifier systems [29-32]. In addition to accuracy and precision, ensemble based systems

have also been preferred over single classifier systems for several of other reasons. These

include reduction of risks, allows taking advantage of the divide-and conquer paradigm,

and the ability to process datasets of extreme sizes. Ensemble based systems introduce

efficiencies that often cannot be achieved by single classifier systems. For example, the

divide and conquer paradigm allows a complex problem to be broken or decomposed into

several smaller problems to be handled.

3.1.2 Diversity of Ensemble Based Approaches

The premise of ensemble based approaches is that if several classifiers with sufficient

diversity are trained on a given dataset, each will tend to make different errors, and

combining these classifiers can reduce the overall error especially if the classifiers make

complementary mistakes, the use of multiple classifiers will improve the classification

accuracy with respect to that of individual classifiers [33].

Both theoretical and empirical research have demonstrated that an ensemble is

able to achieve better performance if the base classifiers in it are both reasonably accurate

and tend to err in different parts of the instance, and more recently feature space with

regards to misclassified instances. There is much literature that relates diversity to

classifier performance [34-37]. Several measures have been defined to quantitatively

measure and assess diversity. These include the pairwise, entropy measure, kappa

statistic, and Kohavi-Wolpert variance amongst many others [27].

The key in creating a good ensemble is widely recognized as ensuring that the

individual classifiers are as diverse as possible. Diversity can be achieved in one of

several ways. The most popular methods include using different training datasets to train

23

www.manaraa.com

individual classifiers to create an ensemble. Bootstrapping and Bagging are often used to

draw samples, usually with replacement from the training dataset. These techniques are

particularly appealing when the dataset is of limited size.

Figure 3.1 shows the data instances of three classes in a two dimensional space

represented as squares, circles and triangles. A random and overlapping subset of the

training instance is drawn (indicated by shaded instances). The purpose of drawing

subsets is to create diversity such that each classifier now learns a different decision

boundary. A strategic combination of these classifiers often produces a more accurate

classification than any of the base classifiers in the ensemble.

However, if we had access to a perfect base classifier, we would not have to

resort to ensemble based-approaches. In reality, the presence of noise and outliers can

and often impair the judgment of classifiers. Hence, by combining the decisions of

various diverse classifiers, the ensemble is able to average out inherent noise and able to

generate a more accurate decision boundary than a single classifier on its own. If the

subset is drawn without replacement, the procedure is known as jackknife or k-fold data

split. Here, the entire dataset is split into k blocks, and each classifier is trained on only a

subset of these k blocks, usually, k-1 of them. A different subset of k blocks is selected

for each classifier. The procedure for k-fold data splitting, also known as leave-one-out is

illustrated in Figure 3.2.

24

www.manaraa.com

Classifier 1 4 Decision boundaryl Classifier 2 4 Decision boundary 2 Classifier 3 4 Decision boundary 3

I MDCM"D* QO

00
F * 0*e

Feature 1

Ensemble decision boundary

A A [][][]CI O
0

A A A D 00]0
AAA (N A 00000
` A A AAA,&A AAA 000[]00

AAA0 DE]4AAA A 000

c O toO 0
OO

cooo gooo^
0 o0ogo00 0000

Feature I

Figure 3.1: Combining classifiers that are trained on different subsets of the training data

Entire original training data

reature I

kA--1 blocks - shown in dark background - selected One block - shown in light

for training individual classifiers background - is left out

B 12 k Blockk

Block k4

B319 3It3

-lock1 Block 2

ISBlo
-lok 9-1 lok

I B k*l B k

Classifier k Block 1 I lc lc 3 w.aBlokk1 Blca

Figure 3.2: k-fold data splitting for generating different, but overlapping, training
datasets

25

Classifier 1I

Classifier 2

Classifier 3

Classifier k-1

""I `""'

I

www.manaraa.com

Diversity can be also be aided by having classifiers of varying weakness within

the ensemble. In this case, diversity can also be achieved by using different training

parameters for different classifiers, e.g., using different weight initializations, number of

layers/nodes, error goals, etc. as in the case for training a series of multilayer perceptron

(MLP) neural networks. These free parameters allow one to control or vary the degree of

the stability and weakness of the classifiers. Decision trees and neural networks can be

viewed as good candidates for this purpose, as their weakness can be controlled by the

selection of their free parameters. For example, an MLP with fewer hidden layer nodes

and a larger error goal is weaker than the one with more hidden layer nodes and a smaller

error goal. A further benefit of ensembles is that they may not have to be limited to a

certain architecture or model. While diversity can also be achieved by using entirely

different types of classifiers, such as combining MLPs, decision trees, nearest neighbor

classifiers and support vector machines, using different models or even different

architectures of the same model may only be suited for specific applications that warrant

them.

A number of combination techniques have been studied to improve the

performance by creating diversity within an ensemble. Amongst these ensemble creation

techniques, Bagging, Boosting and the Random Subspace Method (RSM) have enjoyed

more attention [38,39].

In brief, the diversity of an ensemble may be achieved by, training weaker

classifiers using different random subsets of the training data, using different types of

classifiers, varying classifier parameters, or simply using different subsets of features

26

www.manaraa.com

among individual classifiers. Hence, employing such techniques allows further

optimization of ensemble based systems.

3.2 AdaBoost.M1

Boosting is defined as a process of producing a very accurate prediction rule by

combining rough and barely accurate rules-of-thumb [27]. It began as a technique for

combining trained classifiers with unique sets of strengths and weaknesses. Schapire has

shown that for a two class problem, a weak learner that almost achieves high errors can

be converted to a strong learner [40]. Schapire and Freund later developed AdaBoost.M1

extending boosting to handle multi-class learning problems [42]. Since then,

AdaBoost.M1 has emerged as one of the most successful ensemble algorithms.

AdaBoost.M1 and its multiple variations have enjoyed much success in a wide

variety of pattern recognition and machine learning problems. Several variations of the

original AdaBoost algorithm have become popular in recent literature. This even includes

the Boosting Feature Selection (BFS) algorithm [41], AdaBoost.R [42], AveBoost [43],

and Online Boosting [44].

3.2.1 AdaBoost.Ml Explained

AdaBoost.M1 was developed to boost the performance of weak learner classifiers by

generating various weak classification hypotheses, and combining them through weighted

majority voting of the classes predicted by the individual hypotheses.

The algorithm maintains a weight distribution on all the instances in its training

set. A hypothesis is generated by training the classifier using different subsets of the

training data. Higher weights are given to those instances that are misclassified and lower

27

www.manaraa.com

weights are given to those instances that are classified correctly by the current classifier.

In this manner, AdaBoost.M1 assigns appropriate weights to each instance such that it is

forced to focus its attention on the difficult pasts of the instance space.

At the end of a predetermined number of iterations, AdaBoost.M1 combines all

the weak hypotheses generated thus far, through weighted majority voting, and outputs

the label that maximizes the sum of the weights of the weak hypotheses predicting that

label. Unlike Bagging or Boosting, AdaBoost.M1 uses a rather undemocratic voting

scheme, called weighted majority voting. AdaBoost.M1 believes that classifiers that have

shown good performance during training should be rewarded with higher voting weights

than the others. A conceptual overview of AdaBoost.Ml is shown in Figure 3.3 below.

Figure 3.3: Conceptual overview of Algorithm AdaBoost.M1

28

_---·I I I __ I

II I I sl I I I -- I

I Ik-I --
DI

www.manaraa.com

3.2.2 Advantages ofAdaBoost.Ml

One of the main attractions of AdaBoost.M1 is its ability to decrease the ensemble

training error very quickly. Further experiments with AdaBoost show that the testing

error continues to decrease with the addition of more classifiers even after the training

error reaches zero.

Another desirable property of AdaBoost is its ability to identify outliers. This is

because AdaBoost focuses its weight on the hardest examples, and very often the

examples with the highest weight turn out to be outliers.

AdaBoost.M1 and its variations are often fast, simple and easy to program. It has

few parameters to tune. AdaBoost does not require prior knowledge about the weak

learner and hence can be easily combined with any method for finding weak hypotheses.

This is often adequate when the weak learner is strong enough to achieve reasonably high

accuracy. However, this method fails if the weak learner cannot achieve at least 50%

accuracy when run on hard distributions.

3.2.3 Disadvantages ofAdaBoost.Ml

The main disadvantage of AdaBoost.M1 is that it is unable to handle weak hypotheses

with scaled error e, greater than 0.5. However, AdaBoost.M2 removes this requirement.

The expected error of a hypothesis is 1 - 1/C, where C is the number of classes or labels.

Thus, for C = 2, the weak hypotheses need to be better than random guessing. However,

the requirement that the error be less than 0.5 is quite strong and may often be hard to

meet when C >2 [32].

29

www.manaraa.com

3.3 Leamrn

Learning from new data without forgetting prior knowledge, and without requiring access

to the original data is typically referred to as incremental learning. The algorithm Learn'

was inspired by the former boosting algorithm AdaBoost.M1 and developed for solving

incremental learning problems, where the algorithm learns from new data, even when

new data introduce instances from previously unseen classes. Many typical algorithms

are not designed to accommodate new data and discard their existing set of classifiers.

Hence, by losing their previously acquired knowledge at the expense of trying to learn

from the new data, many of these algorithms face the plasticity-stability dilemma [45,46].

Previous experiments have shown that Learn++ places itself very favorably on the

stability-plasticity spectrum [47]. It is able to achieve this because it exploits the synergy

of an ensemble of classifiers to incrementally learn additional information from new data

[48,49,50].

3.3.1 Learn++ Explained

The pseudocode of Learn+ is shown in Figure 3.4 and it is described in the following

paragraphs below. Inputs to Learn++ are (i) the training data Sk of mk samples drawn from

the current database DBk; (ii) a supervised learning algorithm BaseClassifier; (iii) and an

integer Tk, specifying the number of classifiers to be generated for database DBk. Learn++

generates an ensemble of classifiers using different subsets of each training data, Sk. A

weight distribution Dt is initialized to be uniform, giving each instance an equal

likelihood of being selected into the first training subset TR1 .

30

www.manaraa.com

In step 1 of each iteration t, the distribution Dt is obtained by normalizing the

weights Wt of the instances updated based on their classification by the previous

ensemble. In step 2, a subset of current dataset Sk is then drawn according to Dt to obtain

a training data subset, TR, . Learn" 4 calls the BaseClassifier in step 3 and trained with

TR,. The BaseClassifier can be any weak supervised learning algorithm and its goal is to

generate a hypothesis ht, which minimizes the training error. A hypothesis ht is obtained

on the current training subset TRt and its error r, is calculated in step 4. Learn++ requires

et < V2 for each hypothesis, ht. If t > V2 , the current hypothesis ht is deemed too weak, so

it is discarded and the algorithm returns to step 2 where is it is replaced with a new ht,

generated from a new training subset TRt. If et< V2, the scaled error of ht is calculated and

all hypotheses generated during the previous t iterations are combined, using weighted

majority voting, to construct the composite hypothesis Ht on all instances in the current

dataset Sk in step 5. The composite error Et made by Ht is determined in step 6 by adding

the distribution weights of all instances misclassified by the current ensemble. The

normalized composite error, Bt is computed in step 7 and used in updating the weights wt,

which are then used in computing the next distribution D+1. Once Tk hypotheses are

generated for each database DBk, the final hypothesis Hfinal can be obtained by weighted

majority weighting.

For each new database that becomes available, Learn++ first reinitializes the

distribution to be uniform, then evaluates the current ensemble on the new training data

Sk+1, by jumping to Step 6 of the inner loop, and updates the distribution based on the

performance of the current ensemble. This allows the algorithm to focus on the novel

instances from the new database, especially if it introduces new classes as the current

31

www.manaraa.com

ensemble will not be likely to classify the new classes, causing them to misclassify those

instances. This causes the weights of those instances to be increased giving them a higher

likelihood of being included into the next training subset.

Inputs: For each dataset drawn from DBk k=J,2, ...
* Sequence of 1Mk examples Sk={(xi,) I= 1i,.. .,mnk},
* Supervised learning algorithm BaseClassifier
* Integer 7Tk, specifying the number of iterations

Dfl far ahti da t cnha Db?, 1I- 1 R V'
o~~ KrJ eacV.I a a««*Ir«? a se fJ f, , ,-,..., :-.-

Initialize 1(i) = q) = 1/m,, Vi, = 1,2- -,mk

If4 k>I,
Go to Step 6, evaluate current ensemble on new data set Sk,
and update weight distribution;

End If
Dofor t = 1,2,.,Tk:
1. Set D = - so that A, is a distribution

i=1

2. Draw a training subset TRI, from the distribution D,.
3. Call BaseClassifier to be trained with TR?,.
4. Obtain a hypothesis h, and calculate its error

t = DT(i) onSk.
O:t/ (x1)•y,1

If s > V2, discard h,, go to step 2.
Otherwise, compute scaled error as $t=3 l s(l -

5. Call weighted majority, obtain composite hypothesis H,
6. Compute the error of the composite hypothesisInk

Ef= ZDt(i) = Z D,(i)[H,(xt()•# y,|i:Ht (x):tyj i i=1
7. Set B, = E/(l - E,), and update the weights:

A,(i) = D,(i) x {BtifHj(xi) =
j1 , otherwise

Call majority voting and output the final hypothesis.

,(-=ar maxy y log--- + Ha.,(x) = argmaxY N'log-
ye k)(x)=y

Figure 3.4: Pseudocode of Algorithm Learn"

32

www.manaraa.com

3.3.2 Summary of Major Differences between AdaBoost.Ml and Learn+

Both AdaBoost.M1 and Learn" are very similar in implementation with the exception of

two major details. First, AdaBoost.M1 was introduced as a boosting algorithm to handle

multi-class distributions and never intended for incremental learning problems.

Therefore, it does not introduce and handle new classes like Learn". Second,

AdaBoost.M1 uses the performance of the current single hypothesis to update its weight

distribution causing AdaBoost.M1 to focus on other difficult to learn instances,

potentially including outliers. Learn+" on the other hand, uses the ensemble performance

through composite hypothesis. This allows a more efficient incremental learning ability,

as the algorithm can now leamrn from the novel instances introduced from new classes.

3.3.3 Recent Advances in Learn+

While the native combination rule for both Learn+ and AdaBoost.M1 has been weighted

majority voting, [51] have studied the effects of using various combination rules, on both

Learn' and AdaBoost.M1 in an incremental learning setting. The experiments included

use of simple majority voting, weighted majority voting, sum rule, median rule, product

rule and decision template. [51] conclude that while it has been well established that the

choice of combination rules often is application specific, it is also the case for the

datasets, even in an incremental learning setting. However, the experiments carried out

by [51] do show that even in an incremental setting, simple majority and weighted

majority voting schemes often perform better than their counterpart rules.

33

www.manaraa.com

3.3.4 Problems of Learnm

Learn++ has been shown to work rather well on a variety of real world problems and

applications. However, despite its successes, it has faced certain optimization problems.

This includes the relatively large number of classifiers required for learning instances

coming from new classes. When a new dataset introduces a previously unseen class, new

classifiers are trained to learn from the new class; however the existing classifiers

continue to misclassify instances from the new class. Therefore, the decisions of the

former classifiers trained on previous classes tended to outvote the decision of the newer

classifiers. Hence, the original Learn+ tended to suffer from classifier proliferation; a

sufficient number of new classifiers often needed to be generated to recognize the new

class before the ensemble decision was effective.

[52] have recently presented a modified version of the predecessor algorithm

Learn+. The novelty of the new algorithm, Learn .MT is its use of preliminary

confidence factors and class specific performance (CSP) in assigning voting weights,

based on cross-referencing the classes that have been seen by each of the classifier during

training. The modified approach overcomes the outvoting problem inherent in the

original Learn+. The strong success of CSP in Learn .MT has motivated its use in

Learnm.MFv2.

3.4 Random Subspace Method

An ensemble is generally more accurate than any of the base classifiers in the ensemble.

Both theoretical and empirical research has shown that an effective ensemble should

consist of base classifiers that have high classification accuracy, and have the ability to

make different errors in the instance space. One approach for generating an ensemble of

34

www.manaraa.com

diverse base classifiers is the use of different feature subsets, or ensemble feature

selection [53]. Classifiers trained on different subsets of the feature subspace will tend to

err in different sub-domains of the feature space [54].

Ho introduced the Random Subspace Method (RSM) [55,56] as an efficient

approach for ensemble feature selection. The RSM has much in common with both

bagging and boosting, but instead of sampling different instances, the RSM samples from

the feature space. The RSM can be described as a procedure that randomly selects a

smaller number of dimensions from a higher dimensional feature space. Skurichana

points out that this method has been found to work well when there is redundant

information that is "dispersed" across all the features rather than concentrated in a subset

of them [57]. RSM-inspired methods have been found to do well in a variety of

applications [58,59,60].

3.4.1 Random Subspace Method Described

We briefly describe the RSM algorithm in this section. Let each training object Xi (i =

1,..., m) in the training sample set X = (XI, X2 , ... , Xm) be a d-dimensional vector

Xf = (xiX2'...' xid). In the RSM, d features are randomly selected, where d <d. The

modified training object becomes Xd' = (xi2, ,..., Xid'). In this manner, the RSM

constructs T classifiers each trained on d features, where T is predefined or decided

ahead of time. The original algorithm is shown in Figure 3.5.

35

www.manaraa.com

Figure 3.5: Pseudocode of Algorithm Random Subspace Method

3.4.2 Advantages of RSM

The RSM has several desirable properties. The large dimensionality of the feature space

is often difficult for conventional multivariate search techniques. Hence, Ho proposes a

different approach. Instead of finding the most useful or discriminative features, RSM

simply builds random subsets of the feature space.

At the same time, the RSM can increase the small training sample size by

constructing classifiers from various subsets. This can be particularly useful when the

number of training instances is relatively small compared to its dimensionality. While the

training sample size remains constant, the RSM creates classifiers in a subspace

dimensionality lower than the original feature space. Therefore, the relative training

sample size increases as the RSM takes advantage of the possible subsets within the

training sample. Hence, RSM relatively increases the size of the training samples.

36

Training

Repeatfor= 1,2, ...T;

a. Select d < d features randomly from the original feature space d.

b. Construct a classifier using all mi instances, X = (X1, X2, ... , X,,), using only d

features

Testing

For all instances i = 1, ..., m:

Combine hypotheses of classifiers hx,), t = 1, 2, ... T, by simple majority voting

T
H,(x) = argmax 71

yeY t=1

www.manaraa.com

Data received may often have redundant features. The RSM selects features

based on a stochastic approach. Data in a high dimensional space can be exploited more

effectively if they contain redundant features [61]. Hence, one may obtain better

classifiers trained in random subspaces than in the original feature space.

The RSM originally proposed by Ho uses majority voting. However, the RSM is

not limited to simple majority voting and can use more sophisticated combination rules as

investigated by Tsymbal [62]. The combined decision of such classifiers may be superior

to a single classifier constructed on the original training set in the complete feature set

[38]. Ho [55] shows that while most other classifier methods suffer from the curse of

dimensionality, the RSM embraces and takes advantage of the high dimensionality.

Another key attraction of the RSM is its raw simplicity. It does not require any

special bookkeeping or computation. Despite its simplicity, the combination of multiple

random subset selections has been shown to contain sufficient discriminative information

[63].

The RSM may also be used in collaboration with other well known techniques.

Wang and Tang have extended their work to include a random sampling based LDA

method for high dimensional data classification [64].

Ho [55] has also shown that simple random selection of features subsets are an

effective techniques for ensemble feature selection. She accredits the effectiveness of the

RSM because the lack of accuracy is compensated by the diversity within the ensemble

created through random subsets. There are also other potential benefits aside from

increased accuracy performance [65]. Random subspaces, which also require fewer

37

www.manaraa.com

attributes, utilize lesser memory because only the chosen percentage of features needs to

be stored.

Bagging, Boosting and the RSM have been theoretically and experimentally

investigated and compared to each other. The performance of Boosting and Bagging is

known to be dependent on a large training sample size since they both require a better

representation of the distribution of the data classes to distinguish among them well.

While these three ensemble creation techniques have been found to beneficial for

regression, classification trees and perceptrons, Skurichina and Duin have shown that the

RSM is able to outperform the former two algorithms since it is able to take advantage of

the low cardinality of the data, creating weak and diverse classifiers in random subspaces

[38].

38

www.manaraa.com

CHAPTER 4 - APPROACH

This chapter is split into four sections. Section 4.1 provides general information that is

central to both algorithms described in this thesis. Section 4.2 formally introduces and

provides a detailed outline of the algorithm Learnm .MF. Section 4.3 provides the

motivation for Leamr+.MFv2 and provides the rationale for the modifications introduced

in Leamr .MFv2. Section 4.4 introduces the algorithm Leam .MFNv2 along with a

detailed description of its modifications.

4.1 Preliminaries

The proposed algorithms make two basic assumptions: First, the feature set may contain

attributes that are irrelevant, or less informative than others. Second, the redundancy must

be distributed randomly over the feature set. Hence, a dataset with consecutive feature

values that are strongly correlated with each other, as they are in time series data, do not

meet these requirements. These assumptions are primarily due to the random nature of

feature selection, and are shared with all RSM based approaches. There are many

applications where the data include redundant features, whose identities are unknown,

and that are not tied to each other through a time series function, or better yet, that are in

fact at least reasonably class-conditionally independent. The proposed approaches are

designed for such applications.

Both algorithms use an ensemble of classifiers approach to classify data with

missing features. In order to keep track of which classifiers are used in classifying any

given instance, we define the universal set and usable set of classifiers. The universal set

of classifiers includes all classifiers that have been generated thus far. The usable set of

39

www.manaraa.com

classifiers is the instance specific set of actual classifiers that can be used in identifying

the given instance. Similarly, we also define the set of unusable classifiers, which for any

given instance, are those classifiers that require the features missing in the given instance.

We show empirically that if U classifiers yield a certain classification performance on

data with no missing features, then a similar performance can be achieved simply by

generating additional weak classifiers to obtain a total of U usable classifiers on data that

have missing features. The assumptions for this property to hold are the availability of a

dataset with sufficient redundancy, and a set of weak classifiers each of which is trained

with slightly different parameters.

4.2 Learnm .MF

Learnm .MF is a modification of the original Learn+ algorithm. While Learnm.MF does

not deal with incremental learning, it has its roots in ensemble learning. Learnm.MF was

designed specifically for the missing feature problem. Learnm.MF combines an ensemble

of classifiers approach with random feature selection to classify data with missing

features [66]. It has been inspired in part by the Random Subspace Method (RSM), where

an ensemble of classifiers are trained using random subsets of the features to improve the

diversity of the ensemble to aid in its generalization performance, or in selection of

optimal features [8].

Learnm.MF takes advantage of the instability of weak classifiers. Using an

ensemble of weak classifiers approach has additional benefits. First, the training time is

often less for generating multiple weak classifiers compared to training one strong

classifier. Strong classifiers spend a majority of their training time in fine tuning the

desired decision boundary, whereas weak classifiers completely skip the fine-tuning stage

40

www.manaraa.com

as they generate a rough approximation of the decision boundary. Furthermore, weak

classifiers are also less likely to suffer from overfitting problems, since they avoid

learning outliers, or quite possibly a noisy decision boundary. A strategic combination of

these classifiers then reduces the individual errors.

While using a smaller subset of features for a classification problem is not new,

the feasibility of this strategy on the missing features problem has been mostly

unexplored, and constitutes the main focus for this initial effort. The basic idea in the

proposed approach is to generate a sufficiently large number of classifiers, each trained

with a randomly selected subset of the features. When an instance x with missing

feature(s) needs to be classified, only those classifiers trained with the features that are

presently available in the given instance x are used to determine the correct classification.

A key difference of Learnm.MF from many of the techniques mentioned earlier is

that Leamrn.MF tries to make the most of the existing features, instead of trying to

estimate or impute the values of the missing ones. Hence, it does not introduce the biases

many of the previously mentioned algorithms often introduce.

As mentioned above, the Leamr+.MF algorithm uses an ensemble of classifiers,

each of which is trained on a random subset of the entire feature space. While it is not

essential to the algorithm, we initially assume that the training data has no missing

features, and /or there is sufficient training data with all its features intact. The algorithm

focuses on the more commonly seen, and potentially more annoying case of field data

containing missing features.

The pseudocode and block diagram of the Leamr1.MIF algorithm are provided in

Figure 4.1 and Figure 4.2 respectively. The inputs to the algorithm are (1) the training

41

www.manaraa.com

data set D; (2) the number of features, nof, to be used for training individual classifiers;

(3) a supervised classification algorithm (BaseClassifier), and the number of classifiers

to be created T; and (4) the sentinel value sen to designate a missing feature. The data set

D contains m instances, each with fnumber of features. At each iteration t=1,...,T, the

algorithm creates an additional classifier C. The individual features to be used with each

classifier is randomly drawn from an iteratively updated distribution P, that ensures that

each classifier is as diverse as possible with respect to the feature combinations selected.

Specifically, at iteration t, a subset of features, Fseiection(t), is drawn according to P,, such

that those features with higher weights are more likely to be selected. These features are

then used in training current classifier, Ct. P, is initialized to be uniform, so that each

feature has equal initial likelihood of being selected into Fseiection(1). This distribution is

very similar to the approach taken by AdaBoost.M1 and Learn'+. Both AdaBoost.M1 and

Learn++ maintain a distribution to keep track of instances, whereas in this effort the

distribution is used to keep track of features.

The block diagram of Learnm.MF is given in Figure 17, and described in detail

below. For each iteration, P, is first normalized to obtain a legitimate distribution (step 1).

f P t U) (4 .1)

Next, nof (number of features) features are randomly drawn from Pt (step 2)

which constitute the set Fselection(t). The tth classifier Ct is trained (step 3) using the

features in Fseiection(t) and tested on training data (step 4). The tth classifier Ct must

achieve a minimum of 50% correct classification on its training data to ensure that it has

a meaningful classification capacity.

42

www.manaraa.com

TRAINING

Figure 4.1: Pseudocode of Algorithm Learn".MF

43

VAT LID ATTION/TESTING

www.manaraa.com

Figure 4.2: Block Diagram of Algorithm Learn++.MF

44

III I II I I I

I --I II I I I --

lir Ir

www.manaraa.com

The distribution Pt is then updated (step 5) according to

Pt (Fselection ()) = Pt (Fselection (t)) . (4.2)

such that the weights of those features that appear in the current Fselection(t) are reduced by

1
a factor of A, where 0 <- <1. Those features not in the current selection effectively

receive higher weights when Pt is normalized again in step 1 of next iteration. This

strategy helps ensure that the individual classifiers are trained with as diverse features as

possible. While the algorithm does use the notion of random subspacing for its features,

the selection of features that Leam .MVIF takes is not entirely random. Learnm .MF selects

its features according to the feature distribution, Pt. The motivation of this feature

distribution is meant to ensure that the features selected are as diverse as possible.

However, it does not mean the features that have been selected in the previous trial have

no chance of being selected by the current trial. Instead, they have a lesser likelihood of

being selected. Hence, the subspacing selection method of Learnm.MVF can be viewed as

an autonomous, pseudorandom procedure.

During the validation phase, the algorithm searches for sentinels, the place

holders for missing data. To ensure that actual values are not mistaken for the sentinel,

sen should be chosen as a value not expected to occur in the data. All features j, j=1,...,f

with a sentinel value in the given instance are then flagged and placed into the set of

missing features MfeaKi) for that instance xi. Finally, all classifiers Ct whose feature

selection list Fselection(t) did not include those in Mfeat(i) (that is, usable classifiers that did

not use any of the features in Mfeat(i)) are combined through majority voting to determine

the classification of instance x1. This constitutes the ensemble classifier C(i) for xi:

45

www.manaraa.com

c (i) = argmax Z [| M feat() Fselection(t) |] (43)
Y t:C,(x)=y

where [j.] evaluates to 1, if the predicate is true, and zero otherwise. We note that the

number classifiers T should be chosen large enough to create adequate number of usable

classifiers for the problem at hand, as described in results.

4.3 Motivation for Leamr .MFv2

Learnm..MF works well in a variety of applications with missing features as discussed in

detail in the Results section [66,67]. However, there is room for improvement and

Learnm..MF can be further optimized to boost and improve its performance.

In the current algorithm Learnm..MF, the classifiers are combined through a

simple majority voting method, where each classifier votes on the class it predicts, and

the class that receives the most votes is chosen as the final classification. Voting schemes

such as simple majority voting do not take into account the local expertise of the base

classifiers. This approach can be viewed as being sub-optimal, however, as not all

classifiers perform equally well [62]. In other applications that use ensemble approaches,

it has been well established that a weighted majority voting scheme can improve the

performance of the ensemble if the voting weights are properly chosen.

Brodley and Lane [68] have studied various aspects of creating effective

ensembles. Also, they show that increasing the coverage of an ensemble through diversity

is not enough to ensure increased prediction accuracy if the integration method does not

utilize the coverage. Thus, while it has been established that diversity and coverage are

often pertinent conditions for ensemble accuracy, it is important for the ensemble to have

a good integration method that will further utilize the diversity of the base classifiers.

46

www.manaraa.com

Hence, we look for a possible integration method that may take advantage of the diversity

and coverage.

Such an integration method can come from confidence estimation and

combination rules such as weighted majority voting. The goal of ensemble combination

rules is to maximize the useful information provided by all classifier outputs in such a

way that the correct decisions are amplified and the incorrect ones are cancelled out.

Properties of different combination rules have been well researched [69,70] within the

context of improving generalization performance of an ensemble system. In any

combination rule, the final decision is the class that receives the largest support from the

ensemble. If there is reason to believe that some classifiers are more competent than

others, giving higher weights to those classifiers may improve the classification

performance. The integration of an appropriate combination rule will help us to boost the

classification performance of the former algorithm.

A classifier's confidence can be used to adjust its voting weight. The concept of

class specific performance CSPc, introduced earlier in [52] is defined as the training data

performance of the ensemble's tth classifier in correctly identifying a particular class, coc,

for c=1,2,..., C. Hence, by incorporating the CSPtc into the algorithm, the local expertise

of the classifier for each class can be incorporated into the algorithm. A classifier's

weight that takes class information into consideration may be a better quantity as a

weight factor since it utilizes the coverage of the dataset. We provide a detailed

description to derive the CSP later in the forthcoming section.

47

www.manaraa.com

0 ... 0 0 0

Figure 4.3: Minimum Output Variance of a Classifier

0 ... 0 1 0

Figure 4.4: Maximum Output Variance of a Classifier

We define the output variance as the variance of the output values of a classifier

for which the desired outputs are binary encoded: if the correct class is coc, then the cth

output node of the classifier is 1 and all others are zero. The minimum possible output

variance is zero, which would occur if all output nodes have the same value. Such an

outcome can be interpreted as the classifier not being able to make a decision (zero

confidence in decision). We show an example above in Figure 4.3. The maximum

possible output variance is 1/C, which would occur if one output is 1 and all the rest are

zero, which can be viewed as the classifier being absolute positive of its decision. We

show an example above in Figure 4.4. For consistency across databases of different

number of classes, the output variances are also normalized to [0 1] range by multiplying

them with C.

In this work, the product of the class-specific performance CSPtc, and output

variance are used as a measure of classifier confidence. The heuristic and intuitive

assumption in using the output variance as a confidence measure is as follows: a classifier

with a large output variance has a higher confidence in its own decision. We increase the

voting weights of those classifiers that are more confident in their decision with respect to

48

www.manaraa.com

this measure. While high confidence decision does not necessarily assure accuracy,

empirical evidence suggests that a well trained classifier usually has a high output

variance when the decision is in fact correct; and a low output variance when its decision

is incorrect. It was noticed that - on all databases tried so far - the classifier was almost

always correct when the output variances were above a certain threshold, and almost

always incorrect when below. This threshold was also empirically determined as the

mean plus two times the standard deviation of the output variances of the misclassified

instances (of the training data). It should be emphasized that the output variance is not a

measure of accuracy, and hence is not used to determine whether a classifier is correct in

its decision, but merely as a measure to assess competing classifiers, in determining

which classifiers' decision should be weighted more favorably.

4.4 Learnm.MFv2

The Learnm.MIFv2 algorithm uses an ensemble of classifiers, each of which is trained on

a random subset of the entire feature space. Similar to Learnm.MF, Leamrn.MIv2

assumes that the training data has no missing features, and /or there is sufficient training

data with all its features intact. Like its predecessor, Learnm.MIFv2 focuses on the more

commonly seen, and potentially more annoying case of field data containing missing

features.

The pseudocode and block diagram of the Learnm.MFv2 algorithm are provided

in Figure 4.5 and Figure 4.6, respectively. The inputs to the algorithm are (1) the training

data set D; (2) the number of features, nof, to be used for training individual classifiers;

(3) a supervised classification algorithm (BaseClassifier), and the number of classifiers

to be created T; and (4) the sentinel value sen to designate a missing feature. The data set

49

www.manaraa.com

D contains m instances, each with f number of features. The algorithm is set to run T

times, generating an additional classifier C,, h, (hypothesis) at each iteraction t=1,...,T.

The number of classifiers T should be chosen large enough to create adequate number of

usable classifiers for the problem at hand.

At each iteration t=1,..., T, an iteratively updated distribution Pt for selecting

which features of the selected instance are used for training the next classifier Ct. The

discrete distribution Pt is essentially created to assign a weight to each feature. At each

iteration t, a subset of features, Fseiection(t), is drawn according to Pt such that those

features with higher weights are more likely to be selected into Fseiection(t), for training

current iteration's classifier, ht. Before the first iteration, P1 is also initialized to be

uniform, unless there is reason to choose otherwise, so that each feature has equal

likelihood of being selected into Fseiection(1).

The distribution Pt, is normalized in step 1 of the iterative loop, so that their sum

equals to 1, and that a legitimate distribution is obtained.

=/Z ftU)(4.4)

Next, nof features are randomly drawn from Pt in step 2. The features selected

constitute the set Fseiection(t). The nof value should be selected carefully. A high nof value

has been found to yield better classifiers because each classifier will be trained with more

features. However, fewer qualifying classifiers will then be available to classify instances

with missing features. Conversely, a low nof value will result in higher number

qualifying classifiers for each instance; however they may be too weak to achieve a

meaningful classification performance. Previous trials [67] has shown that using a dataset

with a large dimensionality of redundant features, one can often obtain similar

50

www.manaraa.com

performances over a wide range of nof at a cost of varying percent of classifiable

instances in the test dataset.

Only those features listed in Fseection(t) are used for each instance for training h,.

The trained classifier h, is then tested on the training data D in step 3. The current

hypothesis he, is required to achieve a minimum 50% correct classification performance

on D in step 4 to ensure that it has a meaningful classification capacity. If h, does not

meet this requirement, then a new Fseiection(t) is drawn and a new classifier is generated.

In step 5, Mvrt is created as a vector of the output variances of the classifier for

all misclassified instances

Mvrt = outvar(ht(xi)•yi),Vxi=l1,...,m (4.5)

where outvar(.) is simply the variance of the classifier outputs. We refer our reader to

Section 3.4 for our earlier definition of output variance. The threshold for the output

variance, Tvrt, is then computed in step 6 as the mean of Mvrt plus two times its standard

deviation.

51

www.manaraa.com

TRAINING

VALIDATION/TESTING

Figure 4.5: Pseudocode of Algorithm Learn".MFv2

52

- · ~r I I Iera m

www.manaraa.com

Iesrt ata,_ ,DN ,lot

Figure 4.6: Block Diagram of Algorithm Learn++ .MFv2

53

~I I C II I I I ICI L -v

www.manaraa.com

Tvr, is newly introduced into Learnm++.MFv2 and will later serve as the decision boundary

for output variance in combining classifiers: if the output variance of h, while classifying

an instance during testing, is above its Tvr, threshold, then the voting weight of h, will be

proportionately increased, in anticipation that it is making a correct decision.

The class specific performance is further added as a confidence measure in

Learn..MFv2. In order to compute class specific performance as the second weight

adjustment factor in step 7, CIc is first calculated as the number of instances that the

classifier correctly identifies from class w)

M

CI, = [hi(xi,)=c, = yi],\Vc,c=1,..-,C (4.6)

i=1

followed by Ic, the total number of instances that the classifier identifies as class Co,

correct or otherwise:

M (4.7)]Ic = [\ht(xi) = c |1]9V c, c = 1,-.,C (.)
i=1

where [* |] evaluates to 1 if the predicate holds true. The class specific performance

CSPtc of ht on class woc is then the proportion that the tth classifier is correct when

assigning an instance to class coc:

CSPtc = CIc/ICO,<CSP•tc1 (4.8)

Next, the distribution Pt is updated in step 8 according to

P (Fselection (t)) = P (Fselection (t)) . (4.9)

such that the weights of those features that appear in Fselection(t) are reduced by a factor of

1 1
X, where 0< - <1. The value of - should be selected carefully so as to ensure that the

2 2

54

www.manaraa.com

weights of the features are not drastically reduced. Those features that were not in the

current selection effectively have their weights increased when Pt is normalized again in

step 1 of iteration t+1. While the algorithm does use the notion of random subspace

selection of its features, the selection of features that Learn.MVFv2 and its predecessor,

Learnm.MF take are not entirely random as explained earlier in this chapter. It should be

noted again that T should be chosen large enough to create an adequate number of usable

classifiers for the problem at hand.

After T classifiers are generated, the algorithm proceeds to the validation phase.

During the validation phase, the algorithm searches for sentinels, the placeholders for

missing data, in step 1 of the validation phase. To ensure that actual values are not

mistaken for the sentinel, sen should be chosen as a value not expected to occur in the

data. All features j, j=1,...,fwith a sentinel value in the given instance are then flagged

and placed into the set of missing features MfeaKi) for that instance xi. For final

classification, only qualifying classifiers whose feature selection list Fseiection(t) did not

include those in MfeaKi) (that is, classifiers that did not use any of the features in Mfeai))

are combined to determine the classification of test instance xi.

As tth classifier evaluates xi, its output variance is computed and normalized to [0

1] range as Avrt(i) in step 2 of the validation phase,

Avrt (i) = Coutvarh(k (i)) (4.10)

If Avrt(i) is greater than the threshold variance Tvrt calculated earlier (which

indicates that he is probably correct in classifying xi), then it is multiplied by a constant K,

where 1 < K < 2 is to be used in the increasing voting weight of ht. Hence, a classifier is

that is more confident in its own decision will have its weights increased. However, it

55

www.manaraa.com

should be noted that if it does not meet the above condition, the classifier is not penalized

and its own weight is not lowered. For any given instance xi, each usable classifier's vote

is obtained as the product of Avr, and CSPtc, and these classifiers are then combined

through weighted majority voting to obtain the composite hypothesis H#(i) for the ith

instance xi :

Ht (i) = arg max Avrt (i) CSPtc M feat (i)W Fselection ()|] (4.11)COc t:ht (x)= c
The current composite hypothesis becomes the final hypothesis for the instance xi.

In summary, Learn`.MFv2 has introduced some modifications to the original

Learnm.MF algorithm. This includes the CSPtc (class specific performance of the tth

classifier, and Tvrt (serves as the decision boundary for output variance in combining

classifiers). These modifications attempt to boost the performance of the algorithm above

that of Learnm..MF by taking advantage of previously well known techniques such as the

weighted majority voting to utilize the coverage of the data to attempt to be a more robust

algorithm.

56

www.manaraa.com

CHAPTER 5 - IMPLEMENTATION AND RESULTS

This chapter is split into four sections. Section 5.1 describes the testing procedure used

by both Learn.MF and Learnm.MFv2 for the datasets used in validating the results.

Section 5.2 describes each of the datasets and the simulation results of the algorithms

Learnm.MF and Learnm.MFv2 on those datasets. Section 5.3 summarizes the observation

and trends based on the simulation results. Section 5.4 provides an overall evaluation of

both the algorithms.

5.1 Testing Procedure

In all cases, multilayer perceptrons were used as the base classifier, though any

supervised classifier can be used. The training parameters of the base classifiers (e.g.

error goal, number of hidden layer nodes), were not fine tuned, but rather selected as

reasonable values for the given database, giving the ensemble additional diversity

through relatively instable base classifiers.

The global number of features in the dataset is defined as the product of the

number of features per instance f, and the number of instances, m; and a single test trial

as evaluating the algorithm with 0.0% ~ 30.0% (in steps of 2.5%), of the global number

of features missing from the test dataset. The algorithms were evaluated with different

number of features, nof, used in training individual classifiers. All performance figures

are averages of 10 test trials, reported with 95% confidence intervals. Missing features

were simulated by randomly replacing actual feature values with sentinels.

An example of the global number of features is shown in Figure 5.1 which has 20

instances and 8 features. A white or clear block is shown as having a clean or present

57

www.manaraa.com

feature. A black block, on the other hand, represents a feature missing or corrupt. Figure

5.2 and Figure 5.3 show examples of 10% and 20% of the feature space missing or

corrupt. This corresponds to 16 and 32 black blocks on the figures respectively.

Data Instances I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Attributes F1

(Features) F.
-F F 3 -r. me Zu c i iZZZ hiZZZ ZZtreF-3F 4

F.....................L
F7I7--- --- --- --------------------iiI L - ---
FS 5

Figure 5.1: Example of a feature space with 20 instances having 8 features

Figure 5.2: Example of 10% feature space artificially missing or corrupt

Figure 5.2: Example of 10% feature space artificially missing or corrupt

Figure 5.3: Example of 20% feature space artificially missing or corrupt

58

www.manaraa.com

5.2 Discussion of Simulation Results

Learnm.MF and Learnm.MFv2 were evaluated on two real world applications of

hazardous gas identification (VOC-I and VOC-II), and eight benchmark databases

(Ionosphere (ION), Wine, Dermatology (DERMA), Wisconsin Breast Cancer (WBC),

Water, Pen Digits (PEN), Optical Character Recognition (OCR) and E-coli) from the UCI

repository [71]. Table 5.1 provides a summary of the data distributions for all databases

used in our experiments. For each database, the number of features f is given in

parentheses, followed by class-specific size of training and test datasets. Table 5.2

provides the various values of nof, and the total number of classifiers generated for each

database. For example, the Ionosphere database (ION) consists of a total off=34 features,

was used with four different nofs (8, 10, 12, and 14 out of 34 features). T was set to 1000.

The effect of these parameters, and hence suggestions for their selection, are discussed in

detail in the following paragraphs.

We see many similar trends between the algorithms' behaviors. Hence, instead of

repeating many of the trends for each subsection, the most important or noteworthy issues

are discussed in detail in the following subsections.

59

www.manaraa.com

Table 5.1: Data Distribution for all datasets evaluated

Dataset I Class-- 1 2 3 4 5 6 7 8 9 10 11 12 Total

ION Train 30 30 - - - - - - - - - - 60

(34) Test 100 110 - - - - - - 210

WBC Train 100 100 - - - - - - - - - - 200

(30) Test 100 100 - - - - - - - - - - 200

WINE Train 49 61 38 - - - - - - - - - 148

(13) Test 10 10 10 - - - - - - - - - 30

WATER Train 96 44 26 22 - - - - - - - - 188

(38) Test 95 44 25 22 - - - - - - - - 186

VOC-I Train 30 30 50 30 40 - - - - - - - 180

(6) Test 34 34 62 34 40 - - - - - - - 204

ECOLI Train 60 40 30 20 10 - - - - - - - 160

(5) Test 40 30 20 15 10 - - - - - - - 115

DERMA Train 70 40 50 30 30 15 - - - - - - 235

(34) Test 30 20 21 18 18 5 - - - - - - 112

PEN Train 50 50 50 50 50 50 50 50 50 50 - - 500
(16) Test 50 50 50 50 50 50 50 50 50 50 - - 500

OCR Train 100 100 100 100 100 100 100 100 100 100 - - 1000

(62) Test 50 50 50 50 50 50 50 50 50 50 - - 500

VOC-1I Train 5 5 5 5 5 5 5 5 5 5 5 5 60

(12) Test 2 2 2 2 2 2 2 2 2 2 2 2 24

Table 5.2: Number of features (not) and number of classifiers (T) used for each dataset

Dataset nofi nof2 nof 3 nof4 nof5 T

ION (34) 8 10 12 14 - 1000

WBC (30) 10 12 14 16 - 1000

WINE (13) 3 4 5 6 7 200

WATER (38) 12 14 16 18 - 1000

VOC-I (6) 2 3 - - - 100

ECOLI (5) 2 3 - - - 1000

DERMA (34) 8 10 12 14 - 1000

PEN (16) 6 7 8 9 - 250

OCR (62) 16 20 24 - - 1000

VOC-II (12) 3 4 5 6 - 200

60

www.manaraa.com

5.2.1 Volatile Organic Compound I Dataset

This database consisted of responses of six quartz crystal microbalances (QCM) to five

volatile organic compounds, including ethanol (ET), xylene (XL), octane (OC), toluene

(TL), and trichloroethylene (TCE). Of the 384 six-dimensional signals, 180 were used for

training and 204 for testing. Previous experiments have shown that using optimized

classifiers trained by using all six features tested on the test dataset with no missing

features performed at 86.2%, setting the benchmark target for this database. Two values

of nofwere considered: 2 and 3, out of six, corresponding to 33.3% and 50% of available

features, respectively. T was set as 100 classifiers.

Table 5.3 summarizes the test performances for both algorithms Learn .MF and

Learn".MFv2. The columns in Table 5.3 includes both the nofs, and also include the

percent of the total number of the instances that could be processed (correctly or

otherwise) with the existing ensemble for both algorithms. For brevity and space

considerations, we denote v1 to mean Learnm.MF and v2 to mean Learnm++.MFv2.

We begin by discussing the results of Learnm.MF first. Table 5.3 indicates that

the algorithm performed quite well, even for a substantial amount of missing features.

Note that the first row with 0.0% missing features indicates the algorithm performance

when individual classifiers were trained on nof features, but with no features missing on

the test data. The proximity of this number to the target 86.2% (obtained when all 6

features were used) especially for the case when nof.3/6, indicates that this dataset does

include redundant features.

Also, since the features for each classifier are selected at random, it is possible

that the particular features available for any given instance (after removing the missing

61

www.manaraa.com

features) do not match any of the feature combinations selected by the classifiers. Such

instances cannot be processed, as there would be no classifier trained with the unique

combination of the available features. The performances given in the tables are calculated

on those instances that can be processed, and the percent of such instances are also shown

in tables.

To describe the effect of the algorithm's free parameters, we also provide a set of

four figures for each database analyzed. Figure 5.4a summarizes the ensemble

performance of Learnm".MF on this dataset. Figure 5.4b shows the average performance

of a single usable classifier trained with nofs = 2/6 and 3/6. We note that the ensemble

significantly outperforms the single classifier for either selection of nof, and the ensemble

is also able to process a larger portion of the data. A single usable classifier trained on 3

out of 6 features is able to classify 72% of the instances with a 73% performance,

whereas the ensemble of classifiers is able to classify all instances even when 10% of the

features are corrupt or missing with a performance of 85%. We also observe that a

classifier trained on a larger nofnormally achieves a higher generalization performance,

but is only able to classify lesser instances as the percent of missing feature increases.

This phenomenon is true for both the ensemble and a single usable classifier and can be

attributed to the fact that when larger number of features is used for training, fewer

classifiers are available to accommodate instances that have many missing features. In

fact, the probability that there may be no classifier available for a specific combination of

missing features increases, if larger number of features were used for training, since a

larger number of features are required for processing these instances. Of course, in the

limiting case, if all features were used for training, there would be no classifier available

62

www.manaraa.com

even for a single missing feature, which brings us back to the motivation behind using an

ensemble trained with random feature subsets. Figure 5.4c, shows percent of instances

that can be processed decreases with increasing ratio of missing features for both the

ensemble and a single usable classifier. The ensemble for both the nofs are shown on the

top portion of this figure, whereas the single classifier for both the nofs is shown in the

bottom half. This is closely related to the percent of usable classifiers for any given

combination with or without missing features as seen in Figure 5.4d. Figure 5.4d depicts

the decline in percent of usable classifiers for any given classifiable instance for both the

nof values considered, as a function of the ratio of missing features.

Table 5.3: Learn".MF and Learn".MFv2 Performances on the VOC-I Dataset
(nof= 2/5) (notf= 3/5)

% Missing % v1 Mean % v1 % v2 Mean % v2 % v1 Mean % v1 % v2 Mean % v2
Features Performance Process Performance Process Performance Process Performance Process

0.00% 77.45 ±0.00 100 81.86 ±0.00 100 85.29 ± 0.00 100 91.67 ±0.00 100

2.50% 77.70 ± 0.47 100 81.91 ± 0.31 100 84.80 ± 0.23 100 91.47 ± 0.34 100

5.00% 77.89 ±0.58 100 81.67 ± 0.44 100 84.79 ± 0.76 100 91.13 ± 0.42 100

7.50% 77.39 ± 0.83 100 82.01 ± 0.57 100 84.75 ± 0.87 100 90.88 ± 0.55 100

10.00% 77.18 ± 0.60 100 82.30 ± 0.91 100 84.28 ± 0.69 100 90.44 ± 0.76 100

12.50% 77.43 ± 0.69 100 82.16 ± 0.81 100 83.94 ± 1.08 100 90.29 ± 1.52 100

15.00% 76.88 ± 0.83 100 81.67 ± 0.74 100 83.64 ± 0.59 99 90.10 ± 0.79 100

17.50% 77.96 ± 0.67 100 82.50 ± 0.50 100 82.80 ± 1.67 99 89.80 ± 0.93 100

20.00% 77.08 ± 0.90 100 82.21 ± 0.79 100 81.56 ± 0.66 98 89.85 ± 1.12 100

22.50% 77.70 ± 0.80 99 82.26 ± 0.81 100 82.98 ± 1.48 96 89.95 ± 0.88 100

25.00% 76.80 ± 1.03 99 82.06 ± 1.07 100 82.02 ± 1.37 96 89.12 ± 1.78 100

27.50% 77.10 ±1.26 98 81.27 ± 0.92 100 81.04 ± 1.20 94 88.82 ± 0.82 100

30.00% 75.36± 1.60 98 81.23 ± 1.25 100 80.54 ±1.72 92 88.48 ± 1.41 100

Table 5.3 also summarizes results obtained by using Learnm .M1Fv2 and Figure 5.5

illustrates the trends obtained by Learn^.M1IFv2 in a similar manner described above.

Figure 5.5a indicates one clear advantage in using Learn '.MIFv2: the ensemble

performances of Leamn .1MFv2 with nofs = 2/6 and 3/6 are 81.86% and 91.67% with no

features missing respectively, whereas the ensemble performances of Leamr^.MIF with

63

www.manaraa.com

nofs = 2/6 and 3/6 are 77.45% and 85.29% respectively when no features missing. With

30% of the feature space missing or corrupt, Learnm.MFv2 was still able to achieve 81%

and 88% for nofs =2/6 and 3/6 as opposed to Learn".MF achieving 75% and 80%

respectively. Using Learnm.MFv2 on this dataset has seen a 4-6% increase in ensemble

performance. We refer the reader to compare these figures to the performance of the

ensembles created by Learnm.MF.

Earlier, we reported that the target performance for this dataset using an

optimized classifier trained on all features yielded 86.2% performance. However, the

Leamr .MFv2 ensemble performance of 91.67% was able to surpass the target

performance using nof = 3/6. A possible explanation for this can be attributed to

potentially irrelevant features in the original database, where the removal of such features

combined with weighted majority voting further improves the performance. Figure 5.5b

shows the average performance of a single usable classifier from Learnm .MFv2 ensemble

trained with nofs = 2/6 and 3/6. There is an approximate 7-10% increase in the

performance of a single usable classifier under Learnm.MFv2. This explains the reason

for the increase in performance of the ensemble. Figure 5.5c shows that the percent of

instances that can be processed decreases with increasing ratio of missing features for

both the ensemble and a single usable classifier, an expected outcome. Figure 5.5d

reports the average decline in percent of usable classifiers for any given classifiable

instance, for both nofvalues considered as the ratio of missing features increases. These

trends were also seen by Learn *.MF earlier on the same dataset.

As confirmed by the results on the other datasets (presented below), a larger nof

provides a better initial performance than a smaller nof, but the ensemble is more

64

www.manaraa.com

resistant to unusable feature combinations with a lower nof. This makes perfect sense:

larger nof gives better performance - on those instances that can be processed - since

more features are available to learn the underlying data distributions. However, lower nof

is more resistant to unusable feature combinations, since fewer features are necessary to

identify any given instance. Hence, the choice of nof presents an interesting trade-off,

which is further analyzed in the following results.

--- 2 features
1% oo 3 features

98%:

1%1100%

*-.9

: ': ^^*-92

i t i i'» l i,. i - i

J 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

a) Ensemble Performance

--- 2 features
3 features

U 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

14
73.5

73

72.5

72

71.5

71

70.5

70

69.5cI 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

b) Single Usable Classifier Performance
1T0u

90

80co

I 70

I60

I 50
0-.

40

30
0 2.5 5 7.5 10 12.5 16 17.5 20 22.5 25 27.5 30

Percent of missing features %

d) Percent of Usable Classifiers

Figure 5.4: Learn".MF Performance Results on VOC-I Dataset

65

72%

S33%

S---2 features -
3 features

S I %t64% /

S T48%

8b

84

82

cc 80
0-

78

76

74

100

90
80
70
60

a)
I50
CD

40

30n

N : . . --- 2 features
N -- 3 features

InO 7A

www.manaraa.com

-2 features
3 features

:t 100%

- otlOO%

Itf 100%

l .1100%I00%

4100%:?

i-O-
*~-- ,^.- ^ : ^ ^ J0

3 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

a) Ensemble Performance

I --- 2 features I
- 3 features

0 5 10 15 20
Percent of missing features %

N\

25 30

c) Percent of Processed Instances

or

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

100

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

d) Percent of Usable Classifiers

66

90

88

a)
86

0}

84

82

I.5

05

W£(a

f32%

481% 4 J^i^ 4 49%

--- 2 features
3 features

b) Single Usable Classifier Performance

--- 2 features

-:3 features

N:

Figure 5.5: Learn".MFv2 Performance Results on VOC-I Dataset

01)92 1 I

bu I , u
i

inn_ I _ _ 1 I I I I

A ýM

Ju d0qn

I

www.manaraa.com

5.2.2 Volatile Organic Compound II Dataset

This smaller, but higher dimensional version of the VOC database consisted of responses

of twelve QCMs to twelve VOCs, including acetone (AC), acetonitrile (ACN), toluene

(TL), xylene (XL), hexane (HX), octane (OC), methanol (ME), ethanol (ET), methyl

ethyl ketone (MEK), tricholoroethylene (TCE), tricholoroethane (TCA), and

dichloromethane (DCA). Of the 84 12-dimensional signals, 60 were used for training

(five per class) and 24 for testing (two per class). Previous experiments have shown that

optimized classifiers trained using all features with no missing features performed at

100%, setting the benchmark target for our experiments. Four values of nof were

considered: 3, 4, 5 and 6 features, out of 12, corresponding to 25%, 33.3%, 41.7% and

50.0% of the features, respectively. T was set to 200 classifiers.

Table 5.4 summarizes the test performances for Learnm.MF and Learnm.MFv2.

Similar to the previous dataset, Table 5.4 provides results for both nofs, and also includes

the percent of of the instances that could be processed (correctly or otherwise) with the

existing ensemble.

Figure 5.6a summarizes the performance of Learnm.MF on the VOC-Il dataset.

Figure 5.6a clearly shows that both the ensemble performances, and the percent of

instances that can be processed by the ensemble decline as the percentage of missing

features increases; however, they both remain reasonably high up to a 20% missing

features rate. In fact, with nof = 4, 5 and 6, the ensembles performances approach or

reach the target benchmark.

Similar to the previous case, we observe the following: the initial performance of

the algorithm using nof=3 out of 12 started at 95.8% when all features were intact. Its

67

www.manaraa.com

initial performance was lower than the initial performance level of 100% for classifiers

that had been trained with a larger nof. However, the algorithm using nof = 3,

experienced a slower rate of decline in performance and, for the most part, managed to

maintain a steady performance as the percent of missing features increased. With 30% of

the features missing, the ensemble could still process 98% of the dataset and achieve an

88% classification performance. In comparison, the initial performance of the algorithm

using 6 out of 12 features is 97.7% with no features missing. However, it can only

process 88% of the dataset, and even then, can only achieve an overall performance of

83%.

We observe again that the initial performance with a larger nof is higher;

however, the performance drop is steeper with increased missing features, compared to

ensembles trained on fewer features. The decline in the percent of instances that can be

processed is also steeper when larger nof is used to train the classifiers.

The initial performance of Learn".MF using nof = 3 out of 12 started at 95.8%

when all features were intact. This performance was lower than the initial performance

level of 100% for classifiers that had been trained with a larger nof. However, the

performance of Learn".MFv2 using nof=3 out of 12 started with 100%. It was able to

maintain this performance even when -7.5% of the feature space was randomly missing.

For this dataset, Learn1.MIFv2 was able to match the performance of its predecessor on

all nofs even when trained on a smaller nof. Our earlier trials from Learn".MIF has shown

that using a lower nofnormally results in a lower ensemble performance. However, such

ensembles were also more tolerant to the percent of instances that they could process. In

this case, Learnm .MIFv2 is able to take advantage of the weighted majority schemes and

68

www.manaraa.com

obtain a higher generalization performance that was impossible for its predecessor even

with using a smaller nofas seen in this case when using nof-3/12.

Table 5.4: Learn".MF and Learn".MFv2 Performances on the VOC-II Dataset
(nof = 3/12) (nof = 4/12)

% Missing % vl Mean % vl % v2 Mean % v2 % vl Mean % vl % v2 Mean % v2
Features Performance Process Performance Process Performance Process Performance Process

0.00% 95.83 ± 0.00 100 100.00 a 0.00 100 100.00 a 0.00 100 100.00 ± 0.00 100
2.50% 96.67 ± 1.26 100 100.00 a 0.00 100 100.00 a 0.00 100 100.00 ± 0.00 100
5.00% 96.67 ± 1.26 100 100.00 ± 0.00 100 100.00 a 0.00 100 99.58 ±0.94 100
7.50% 96.67 ± 1.26 100 98.75 ± 1.44 100 99.58 ± 0.94 100 100.00 ±0.00 100

10.00% 95.42 ± 2.20 100 99.58 ± 0.94 100 98.33 ± 1.54 100 99.58 ± 0.94 100

12.50% 95.83 ± 1.99 100 98.33 a 1.54 100 100.00 a 0.00 100 100.00 0.00 100

15.00% 96.67 ± 1.26 100 98.75 a 1.44 100 100.00 ± 0.00 100 98.33 ±1.54 100

17.50% 97.08 ± 2.01 100 98.75 ± 1.44 100 98.33 ± 1.54 100 97.50 ±2.51 100

20.00% 97.92 ± 1.57 100 97.92 ± 1.57 100 98.33 ± 1.54 100 99.58 ±0.94 100

22.50% 98.75 ±1.44 100 99.58 ± 0.94 100 98.33 ± 1.54 100 97.92 2.11 100

25.00% 96.25 ± 2.96 100 95.83 ± 2.43 100 97.50 ± 1.54 100 97.50 ± 1.54 100

27.50% 95.83 ± 1.99 100 96.67 ± 2.35 100 97.50 ± 1.54 100 99.58 ± 0.94 100

30.00% 95.00 ± 2.74 100 95.83 ± 2.43 100 99.17 ± 1.26 100 97.92 1.57 99

(nof = 5/12) (nof = 6/12)

% Missing % vl Mean % v1 % v2 Mean % v2 % v1 Mean % vl % v2 Mean % v2
Features Performance Process Performance Process Performance Process Performance Process

0.00% 100.00 ±0.00 100 100.00 ±0.00 100 100.00 ±0.00 100 100.00 ±0.00 100

2.50% 100.00 a 0.00 100 100.00 a 0.00 100 100.00 ± 0.00 100 100.00 ± 0.00 100

5.00% 99.58 ±0.94 100 100.00 ± 0.00 100 100.00 ±0.00 100 99.58 ±0.94 100

7.50% 100.00 a 0.00 100 100.00 a 0.00 100 100.00 a 0.00 100 100.00 ±0.00 100

10.00% 100.00 a 0.00 100 99.58 ± 0.94 100 100.00 ± 0.00 100 99.58 ± 0.94 100

12.50% 100.00 a 0.00 100 99.58 ± 0.94 100 99.58 ± 0.94 100 99.58 ± 0.94 99

15.00% 100.00 ± 0.00 100 99.58 ± 0.94 100 99.58 ± 0.94 100 99.57 ± 0.98 99

17.50% 99.58 ± 0.94 100 100.00 ± 0.00 100 99.58 ± 0.94 98 99.15 ± 1.28 99

20.00% 99.58 ± 0.94 99 100.00 ±a0.00 100 99.11 ± 1.34 97 98.73 ± 2.03 98

22.50% 98.73 ± 1.46 100 98.70 ± 1.50 98 98.28 ± 1.59 97 98.69 ± 1.50 95

25.00% 98.30 ± 1.57 98 99.15 ± 1.28 98 98.64 ± 1.57 93 98.20 ± 2.22 94

27.50% 97.90 2.12 98 97.86 ± 1.61 98 97.39 a 2.17 93 99.11 ±1.34 90

30.00% 96.97 ± 2.09 95 97.42 ± 2.12 97 97.47 ± 3.06 86 97.57 ± 2.49 86

69

www.manaraa.com

3 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features

a) Ensemble Performance

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

101

100

99

98

S 97

S96

95

94

l <; oo% -- » " :

r' . .10% : 2k 1e09

41%-. \ -

4141000

/a

147Josc.4 , 100%|: - 4;86%

7'

1fL00%

- -- 3 features t 100s
.. ..4 features

- S--5 features
6 features

Ile
6.

L)
m(A)

CD
CL

I 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

d) Percent of Usable Classifiers

Figure 5.6: Learn".MF Performance Results on VOC-II Dataset

70

92

90

88

86

84

S82

S80

78

76

74

72

inn

Aa)
-CcL)coa)L)Cca
4-0
L)a)IL

I I I I I I I I a I I I I

b) Single Usable Classifier Performance

\\' ,^'

-- *3 features
4 features

-- 5 features
6 features

3 features
N- N . .* 4 features -

'N N: --- 5 features
- e-

- -.i6 features -

: \ ^;::-N,.

N . ,

i t i i s l l i s i

---7I
ý4- -24%

4:69% 4:33% 418%-441%%

S-- 3 features
4 features

S --- 5 features
-6 features

4 452%-, : :_ 474% 34%i* i.a * I ntoiiL

I inn 1

in n

www.manaraa.com

100

99.5

99

S 98.5

98

97.5

97

96.5

96

95.5

I.R
mC.)co03L)aCO)

a)CL

I

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

a) Ensemble Performance

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

86
-^^ ^-100% , \100% :

I 19%

oo99%
t97%

- -3 features
* 4 features

--- 5 features
S - 6 features

* . .
:

loose

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

100

90

80

a 70

C 60

50

S 40

30

20

in
0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

Percent of missing features %

d) Percent of Usable Classifiers

Figure 5.7: Learn".MFv2 Performance Results on VOC-II Dataset

71

1-7

b) Single Usable Classifier Performance

- 3 features
4 features

-5 features

6 features

3 features
4 features

- - 5 features
-

:
6 features -

N i

84

S82

I 80

78

76

911Mn
.463% 4:26%

t12%

4160% 4
:
33%^,.4 sS%

'.' 410%

,0 .124%

T 141%

- -- 3 features
4 features

--- 5features
6 features

4:52%
4 4 74% O----- *'...,,4.^- -... ^ .,, *-34%illiIIIII

1

,4

*nn1 uu

Su
I--I

www.manaraa.com

5.2.3 Ionosphere (ION) Dataset

This benchmark database consisted of 60 training instances and 210 test instances of

radar returns through the ionosphere. The targets of the radar system were free electrons

in the ionosphere. "Good" radar returns are those showing evidence of some type of

structure in the ionosphere. "Bad" returns are those that do not; whose signals pass

through the ionosphere. Previous experiments have shown that optimized classifiers

trained using all features tested on the test dataset with no missing features performed at

95%, setting the benchmark target for this dataset. The algorithms were evaluated on 4

values of nof = 8, 10, 12 and 14 out of the 34 available attributes. Table 5.5, Figure 5.8

and Figure 5.9 show the performance results and general trends of both algorithms.

The performance results of Learnm .MF clearly show that there are indeed

redundant features in this dataset. The performance for the ensembles trained under the

algorithm Leamrn.MF were closely weaved between 91-92% for all nofs. However,

although this did not seem to have a big influence in performance results, the choice of

nofis critical in the percent of instances that the ensemble can classify and process. It is

noted that there were also some mild increases in performances as the ratio of missing

features increased. Figure 5.8c shows the percent of instances that can be classified, on

average, by a single classifier and an ensemble for all the nofs under consideration for

this dataset. It is evident from Figure 5.8c that the percent of instances that can be

classified declines for any ensemble or list of single usable classifiers. Ensembles or

single classifiers trained on a larger nof are generally less tolerant to combination of

missing features.

72

www.manaraa.com

Learn".MFv2 achieved similar ensemble performances for all values of nofs. The

ensemble performance rates for Leam".MFv2 were between 94-95% when there were

few or no features missing. It was observed that there was generally a 3% increase in the

ensemble performance for Learnm.MFv2 in comparison to the Learnm".MF for most of

the nofs. There was no notable difference in the percent of instances that could be

classified by either algorithm for the respective nofs.

Table 5.5: Learn".MF and Learn ++.MFv2 Performances of the ION Dataset
(nof = 8/34) (nof= 10/34)

% Missing % v1 Mean % vl % v2 Mean % v2 % vl Mean % v1 % v2 Mean % v2
Features Performance Process Performance Process Performance Process Performance Process

0.00% 91.30 a 0.00 100 94.29 a 0.00 100 91.30 a 0.00 100 94.29 a 0.00 100

2.50% 92.32 ± 0.85 100 93.33 ± 1.11 100 91.01 ± 0.44 100 94.20 a 0.49 100

5.00% 92.17 ± 1.22 100 92.32 ± 1.20 100 91.45 a 1.03 100 92.90 ± 1.24 100

7.50% 92.32 a 1.20 100 93.04 ± 0.82 100 90.14 ± 0.82 100 92.03 ± 1.22 100

10.00% 92.03 a 1.31 100 91.16 ± 1.03 100 90.87 a 1.10 100 92.17 ± 1.11 100

12.50% 93.77 ± 0.98 100 92.17 ± 1.31 100 90.68 a 1.61 100 92.03 a 0.88 100

15.00% 92.46 ±1.27 100 92.03 ±0.88 100 90.96 ±1.38 100 92.32 ±1.10 100

17.50% 92.46 ± 1.07 100 91.30 ± 1.46 100 90.87 ± 1.11 100 92.17 ± 1.71 100

20.00% 92.61 a 1.24 100 92.03 ± 0.88 100 90.33 ± 2.03 100 91.00 ± 1.44 100

22.50% 92.03 a 1.01 100 93.33 a 1.22 100 88.87 ± 1.70 99 91.69 a 1.48 99

25.00% 92.03 a 1.31 100 90.71 ± 1.30 100 90.30 ± 2.41 98 91.97 ± 1.47 99

27.50% 91.58 ± 1.86 100 92.32 ± 1.47 100 88.75 a 1.81 97 90.25 a 1.76 97

30.00% 91.97 ± 1.32 99 91.42 ±1.25 100 88.91 ± 2.54 94 89.53 ± 1.65 94

(nof= 12/34) (nof= 14/34)

% Missing % vl Mean % vl % v2 Mean % v2 % vl Mean % vl % v2 Mean % v2
Features Performance Process Performance Process Performance Process Performance Process

0.00% 91.30 a 0.00 100 94.76 ±0.00 100 92.75 ± 0.00 100 95.71 ± 0.00 100

2.50% 91.45 ± 0.33 100 94.86 a 0.69 100 92.32 a 1.10 100 95.57 a 0.82 100

5.00% 91.30 a 0.69 100 95.43 ± 0.72 100 92.61 a 1.14 100 96.43 a 0.53 100

7.50% 91.30 a 0.85 100 95.58 ± 0.55 100 91.74 ± 0.70 100 96.43 a 1.00 100

10.00% 91.01 ± 0.82 100 95.72 ± 1.31 100 91.45 a 1.24 100 95.71 ± 1.42 100

12.50% 90.72 a 0.72 100 95.57 ± 1.47 100 92.03 ± 1.40 99 96.81 ± 1.11 99

15.00% 91.28 ± 0.85 100 94.84 ± 0.98 100 91.59 a 1.07 99 95.98 ± 1.63 99

17.50% 90.94 ± 1.06 99 96.94 ± 0.84 99 91.16 ± 1.42 97 95.70 ± 1.27 97

20.00% 90.70 ± 2.27 98 95.76 ± 1.33 99 92.58 ± 1.85 93 96.14 ± 1.75 93

22.50% 89.55 ± 1.93 96 96.05 a 1.25 95 91.83 a 1.21 89 94.54 ± 2.82 89

25.00% 90.20 ± 2.91 92 93.62 ± 2.27 93 89.82 ± 1.96 80 94.04 ± 2.33 80

27.50% 88.70 ± 2.79 89 94.16 ± 1.78 88 92.25 a 1.53 71 94.36 ± 2.61 71

30.00% 90.67 ± 2.54 80 94.26 ± 2.66 79 90.25 a 1.48 60 93.32 a 3.13 60

73

www.manaraa.com

941

a) Ensemble Performance

\\ \

\ 4 %

. - '8 t
- 8 features

10 features
- 12 features

-14 features arm

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

88

87

i-i09 3 1 i .0%

10 features j 100%

- s-12 features-* **8 features '- / \ /-" " 10 features : ". \f i94%ý-- 12 features .*
- 14 features

2.5 5 7.5 10 125 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

b) Single Usable Classifier Performance
1UU

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

d) Percent of Usable Classifiers

Figure 5.8: Learn++.MF Performance Results on ION Dataset

74

93

S92a)

S91

90
a0

89

90

80

70

60

50

40

30

20

10

0 A I

S 8 features
10 features

S-12 features
\ \ 14 features

\1

\i4

I

86
A 85

84

0I 83

82

%2

5% %
* .. 11.

- -' 8 features |I
.10 features w

--- 12 features
- 14 features
......... __ 10 feature

Ribb

inn I

__ ___ __nr 0U ___ __

www.manaraa.com

97

96

I595

I 94
CD

93

92

a 91

90

8Q

100l

90

S80

70
I 60

50

40

I 30

20

10n

: A*-99%
Ag-ga

1/00% / \7

t- 93%:
4

7
9%

\ 100 0%60
\ \10% :

: :
/ \ 4/ %,

- 8 features %
100% 100%-

..10 features
--- 12 features

14 features 94%-

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

a) Ensemble Performance

8 features
\ 10 features
' 12 features

: 14 features

\ who

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

b) Single Usable Classifier Performance
100

90

80

S70
60

S50
5 40

L)" 30

20

10

0

- --- 8 features
...

:
:. 10 features -

--- 12 features
S1 - 14 features

N

--

\ \

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

d) Percent of Usable Classifiers

Figure 5.9: Learn"+.MFv2 Performance Results on ION Dataset

75

91

90

89

.88
87

I 86

84

I 83

82

10

-.--- 8 features
- ..10 features 2%

--- 12 features
14 features

42%

6% 46: \23% 4. ?\ 6%
6 -

t "42% N t117% ~ I: ~. 17% V "I j t:3%-

rh4

I

www.manaraa.com

5.2.4 Wine Dataset

This dataset consists of chemical analyses results of Italian wines grown in the same

region, but derived from three different cultivars. The analyses determined the quantities

of 13 constituents found in each of the three types of wine. The algorithms were

evaluated with five values of nofused for training: 3, 4, 5, 6 and 7 features out of 13. T

was set to 200 classifiers. Table 5.6 shows the performance of both the algorithms

Learnm".MF and Learn`.MFv2 on the Wine dataset. Figure 5.10 and Figure 5.11 show

the characteristic performance and trends of the respective algorithms on the Wine

dataset.

We report our findings on Learnm".MIF first. On this somewhat simpler wine

database, using 4, 5, 6 or 7 features in training, allowed Learnm".MF to reach 100%

classification performance when no features were missing. It did maintain a very high

performance for up to 10%-20% missing features (note the confidence intervals), with

very little performance drop for larger percentages of missing features. In general, similar

trends can be observed on this database as well, such as a higher initial performance with

a larger nof, with a steeper decline in the performance as well as the percent instances

that can be processed. We note that the performance of the Learnm.MF ensemble trained

on nofs = 3/13 and 4/13 features remained relatively steady, and was able to process the

entire dataset (100% of instances) even when 30% of features were missing. The

performances for all values of % missing features were within each other's confidence

intervals. This reveals the redundancy of features spread across in this dataset.

Learnm.1MFv2 was able to achieve 100% even with using nof= 3/13 features. Hence, one

could possibly use a smaller nof to train an ensemble using Learnm.1MIFv2 and be able to

76

www.manaraa.com

achieve the same initial performance as the ensembles trained under a larger nofs using

Learnm.MF as seen here. The percent of instances that could be classified by the

algorithms for the various nofs under consideration did not vary.

77

www.manaraa.com

Table 5.6: Learn".MF and Learn".MFv2 Performances on the Wine Dataset

% Missing
Features

0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

15.00%

17.50%

20.00%

22.50%

25.00%

27.50%

30.00%

% Missing
Features

0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

15.00%

17.50%

20.00%

22.50%

25.00%

27.50%

30.00%

% Missing
Features

0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

15.00%

17.50%

20.00%

22.50%

25.00%

27.50%

30.00%

(nof= 7/13)

% v1 Mean % vl % v2 Mean % v2
Performance Process Performance Process

100.00 ± 0.00 100 100.00 ± 0.00 100

99.67 ±0.75 100 100.00 ± 0.00 100

99.67 ±0.75 100 100.00 ± 0.00 100

99.33 ±1.51 100 99.33 ± 1.00 100

99.33 ±1.00 100 98.67 ±1.67 100

98.67 ± 1.67 99 99.67 ± 0.75 99

98.30 ± 1.28 98 99.67 ± 1.02 98

98.96 ±1.19 95 97.63 ± 1.65 98

98.94 1.22 95 98.60 ± 1.30 96

98.11 1.43 91 97.87 ± 2.13 93

96.59 ±2.01 88 98.09 ± 1.94 88

96.48 ± 2.70 82 98.45 ± 1.43 83

97.41 ± 2.53 76 97.43 ± 2.55 79

(nof= 3/13)

% v1 Mean % v1 % v2 Mean % v2
Performance Process Performance Process

96.67 ± 0.00 100 100.00 ±0.00 100

96.67 ± 1.12 100 99.00 ±1.15 100

95.33 ± 1.23 100 98.67 ±1.23 100

95.67 ± 1.15 100 98.33 ±1.68 100

98.00 ± 1.23 100 98.33 ±1.26 100

96.33 ± 1.35 100 98.00 ±1.23 100

96.67 ± 1.59 100 98.00 ±1.23 100

97.00 ± 1.76 100 99.00 ±1.15 100

96.00 ± 1.00 100 98.00 ±1.67 100

97.33 a 1.51 100 96.67 ±1.59 100

97.00 ± 1.76 100 96.00 ±1.51 100

95.67 ± 1.96 100 96.33 ±1.35 100

97.67 ± 1.15 100 98.00 ±1.23 100

(nof = 5/13)

% v1 Mean % vl % v2 Mean % v2
Performance Process Performance Process

100.00 ± 0.00 100 100.00 ±0.00 100

100.00 ± 0.00 100 99.67 ± 0.75 100

99.00 ±1.15 100 99.67 ±0.75 100

99.00 ±1.15 100 99.67 ±0.75 100

98.67 ± 1.23 100 99.67 ± 0.75 100

98.33 ±1.26 100 98.67 ±1.23 100

97.00 ± 1.76 100 98.33 ±1.26 100

97.33 ± 1.51 100 98.67 ±1.23 100

98.67 ± 1.23 100 99.33 ±1.00 100

97.97 ± 1.25 99 98.66 1.24 100

97.32 ± 1.51 99 97.31 1.01 99

95.88 ± 2.30 98 97.99 ± 2.31 99

96.12 ± 2.27 95 98.32 1.26 99

78

(nof = 4/13)

% v1 Mean % v1 % v2 Mean % v2
Performance Process Performance Process

100.00 ±0.00 100 100.00 ±0.00 100

99.00 ±1.15 100 99.67 ±0.75 100

99.00 ±1.15 100 99.67 ±0.75 100

99.00 1.15 100 99.33 ±1.00 100

99.00 ±1.15 100 100.00 ±0.00 100

98.00 1.67 100 98.33 ±1.26 100

98.67 ±1.23 100 98.33 a1.26 100

97.33 ± 1.88 100 99.33 1.00 100

96.67 ±1.12 100 98.67 ±1.23 100

98.33 ±1.26 100 99.33 ±1.00 100

98.67 ±1.67 100 97.33 ±1.88 100

97.33 1.51 100 97.32 ±1.51 100

97.67 ±1.61 99 97.67 ±1.96 100

(nof = 6/13)

% v1 Mean % vl % v2 Mean % v2
Performance Process Performance Process

100.00 ± 0.00 100 100.00 ±0.00 100

100.00 ± 0.00 100 99.67 ±0.75 100

99.67 ± 0.75 100 99.67 ± 0.75 100

99.67 ± 0.75 100 99.67 ± 0.75 100

99.33 ± 1.00 100 100.00 ±0.00 100

99.67 ± 0.75 99 98.67 ± 1.23 100

98.67 ±1.67 100 98.67 ± 1.23 99

99.00 ±1.15 100 98.67 ±0.75 99

98.31 ±1.27 99 99.33 ±1.00 97

97.93 ±2.06 97 98.31 1.27 98

97.57 ± 2.67 96 98.60 1.77 95

96.39 ± 2.07 92 97.47 ± 2.14 93

97.34 ± 1.81 88 97.35 ±1.75 89

www.manaraa.com

1001

a) Ensemble Performance

0 2.5 5 7.5 10 12.5 16 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

97

406%
* ... o% 9%ko ao. oioo% 0%

100% 1 %
1

o1»0%-» '\ \ / \, ̂ \
100%00%

\ %8%

\ / 95

~- ~" 3 features :

4 features
--- 5 features

6features
6 features

-- 7 features

2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

0 2.65 5 7.5 10 12.5 15 17.5 20 22.6 25 27.5 30
Percent of missing features %

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

d) Percent of Usable Classifiers

Figure 5.10: Learn".MF Performance Results on Wine Dataset

79

961

965

S94

93

92

91

90

89

98

S97

S96

95

94

93

92

InN

--

b) Single Usable Classifier Performance

3 features
4 features

--- 5 features
6 features

:

-1-7 features

- -- 3 features
S4 features

S---5 features
\ 6 features

7 features

i l i i i l i i

1 98 I
420% 12

8%

<-47N.t7
23%

.. 6% I 25%

.- - 3 features
.... 4 features

-,---5 features

-0- 7 features
4l-73% / '41%,

RR

7---1I nngI1 uurI ._ IC it I ~L ; · ·_ ·~-

I I (1

I

www.manaraa.com

I ~

2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 ,
Percent of missing features %

a) Ensemble Performance

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5
Percent of missing features %

25 275 30

c) Percent of Processed Instances

961

94

S92c
S90

88

86

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5
Percent of missing features %

25 27.5 30

b) Single Usable Classifier Performance

70

60
50

S 40

CD

S 3 features
4 features

.- 5 features
S- 6 features

. -*-7 features

N..,

i N i i t i

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 3:
Percent of missing features %

d) Percent of Usable Classifiers

Figure 5.11. Learn+".MFv2 Performance Results on Wine Dataset

80

1

80

70

S60

a50

40

I30
CD

N N.

N-N

-- *3 features
.. ..4 features

S --- 5features
6 features

S - -- 7 features

i l i l i i i I

I nI -r
* 448% +-21%

t:12%

f-54% 425% -
- --t33~ , f-16%

f 24%
*** * .**-......- * *T66% : T4% 1

1%

* " 1 73%

- - 3 features I 34%
.....4 features
--- 5 features

-- 6 features
-0-7 features

I

-- Rn

i
1TI I LIU

I I ,, I

www.manaraa.com

5.2.5 Dermatology (DERMA) Dataset

This benchmark database deals with differential diagnosis of erythemato-squamous

diseases. The diseases in this group are psoriasis, seboreic dermatitis, lichen planus,

pityriasis rosea, chronic dermatitis, and pityriasis rubra pilaris. Usually a biopsy is

necessary for the diagnosis, and unfortunately these diseases share many

histopathological features. Previous experiments have shown that using optimized

classifiers trained using all features tested on the test dataset with no missing features can

achieve 100%, setting the benchmark target for this dataset. The algorithms were

evaluated by training classifiers using four different values of nofs, 8, 10, 12 and 14 out

of 34 available attributes. 1000 classifiers were generated for this data.

The performance results of both Learn.MF and Learnm.MFv2 are shown in

Table 5.7 below. The behavioral trends of the algorithms Learnm.MF and Learnm.MFv2

can be seen in Figure 5.12 and Figure 5.13, respectively. The performance results and

figures below do not reflect any major differences on this dataset for both of the

algorithms. Hence, we generalize the discussion below to entail both algorithms for this

dataset. Unless mentioned otherwise, any observation reported is true for both algorithms.

The performance trends of the algorithm on the DERMA dataset were comparable

to the trends reported on the other datasets. Again, the algorithm was able to reach 98%

correct classification using 8-14 features for each ensemble, indicating that many of the

features in this database may in fact be redundant. The performances were very close to

each other, regardless of the number of features used for each algorithm, though the most

stable response came from the ensemble using the fewest number of features. While the

performances for both algorithms declined with the introduction of more missing

81

www.manaraa.com

features, the ensembles trained on the lower nofs (i.e. 8/34) had a higher performance

than their counterparts. Similar to previous cases, while the performances were similar

for different number of features, the percent of instances that could be processed by the

respective ensembles trained under the various nofs were not. Using fewer features for

training allowed the algorithms to process a larger percentage of the instances: 99-100%

of the data could be processed even when 30% of the features missing if the classifiers

were trained with 8 features; however, that figure quickly dropped to 82% when they

were trained with 12 features for both algorithms.

This dataset was also used by [23] mentioned earlier in the introduction, which

also employed an ensemble of classifiers approach, but training single-class classifiers

with a single feature at a time. The ensemble performances reported in [23] were in the

50-70% range even for 10% missing features or less. Comparing these results to those

presented in [23], we observe that using a random subset of features significantly

outperforms (95-98% vs. 40-70% as reported in [23]), a similar approach that uses a

single feature at a time. However, such a substantial performance improvement comes at

an increased, but justifiable computational cost (1000 classifiers for Learnm.MIF and

Learnm++.MFv2 vs. 210 classifiers reported in [23]).

82

www.manaraa.com

Table 5.7: Learn".MF and Learn".MFv2 Performances on the DERMA Dataset
(nof = 8/34) (nof= 10/34)

% Missing % v1 Mean % v1 % v2 Mean % v2 % v1 Mean % vl % v2 Mean % v2
Features Performance Process Performance Process Performance Process Performance Process

0.00% 97.32 0.00 100 98.21 ± 0.00 100 98.21 ± 0.00 100 98.21 ±0.00 100

2.50% 97.95 ±0.53 100 97.77 ± 0.34 100 98.12 ± 0.56 100 98.12 ± 0.47 100

5.00% 97.50 ± 0.40 100 97.59 ± 0.43 100 98.21 ± 0.67 100 98.48 ± 0.31 100

7.50% 97.77 ± 0.69 100 97.05 ± 0.68 100 97.41 ± 0.56 100 98.04 ± 0.72 100

10.00% 97.05 0.85 100 97.68 ±0.75 100 97.86 ± 0.69 100 98.04 ±0.72 100

12.50% 96.96 0.96 100 97.50 ± 0.66 100 97.32 ± 0.80 100 97.23 ±0.82 100

15.00% 96.43 ± 0.80 100 96.70 ± 0.80 100 96.78 ± 0.81 100 98.12 ± 0.70 100

17.50% 97.32 ± 0.52 100 95.80 ± 0.85 100 97.05 ± 1.04 100 97.77 ±0.81 100

20.00% 96.25 ± 1.16 100 95.71 ± 0.84 100 95.62 ± 1.19 100 97.41 ±1.11 100

22.50% 96.07 ± 1.32 100 96.16 ± 1.13 100 96.14 ± 1.13 100 96.05 ±0.69 99

25.00% 95.18 ± 1.21 100 94.18 ± 1.25 100 95.00 ± 1.38 98 95.20 ± 1.44 98

27.50% 95.26 1.09 100 95.00 ± 0.81 100 93.86 ± 1.27 97 94.18 ±0.98 97

30.00% 94.60 ± 1.17 99 94.54 ± 1.05 100 92.29 ± 1.67 96 94.22 ± 1.57 94

(nof = 12/34) (nof= 14/34)

% Missing % v1 Mean % v1 % v2 Mean % v2 % v1 Mean % v1 % v2 Mean % v2
Features Performance Process Performance Process Performance Process Performance Process

0.00% 98.21 ± 0.00 100 99.11 ± 0.00 100 98.21 ± 0.00 100 98.21 ± 0.00 100

2.50% 98.39 ± 0.50 100 99.02 ± 0.36 100 98.21 ± 0.43 100 98.57 ± 0.33 100

5.00% 98.57 ± 0.45 100 98.39 ± 0.66 100 98.48 ± 0.53 100 98.21 ± 0.43 100

7.50% 98.48 ± 0.53 100 98.21 ±0.52 100 98.30 ± 0.63 100 98.48 ± 0.74 100

10.00% 97.95± 0.68 100 97.86 ±0.75 100 97.59 ± 0.90 100 97.94 ± 0.43 100

12.50% 98.21 ± 0.67 100 98.04 ± 0.27 100 98.21 ± 0.80 100 97.76 ± 0.81 100

15.00% 98.12 ± 1.10 100 97.32 ± 0.67 100 97.83 ± 0.93 99 97.02 ± 0.87 99

17.50% 97.75 ± 1.26 99 97.22 ± 1.22 100 97.43 ± 1.14 97 96.25 ± 1.15 98

20.00% 96.53 ± 0.80 98 96.56 ± 1.24 98 96.23 ± 1.04 93 95.89 ± 1.20 93

22.50% 95.82 ± 0.73 96 96.22 ± 1.43 97 94.96 ± 1.47 87 95.01 ± 1.48 88

25.00% 93.41 ± 1.39 93 94.77 ± 1.48 94 93.37 ± 1.48 81 94.39 ± 2.27 80

27.50% 93.08 ± 1.78 88 93.57 ± 1.74 88 94.15 ± 1.34 71 92.83 ± 1.60 73

30.00% 92.50 ± 2.61 82 93.64 ± 2.05 82 91.03 ± 2.19 61 92.82 ± 2.17 63

83

www.manaraa.com

98

97

96

i 95

0 94

93

92

91

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

a) Ensemble Performance

90

80

S70

S60

S50S 60

40

S 30

20

10

- - -8 features
......... 10 features

S---12 features
'14 features

..

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

84

JJ

0100

90

80

S70

60^ 60

50

S40

" 30
20

10

100%
00%43% :
1 0 „»», 'S;' "-Trf,«98% :

S100% 09%.-- 4
N 82%

S- -8 features tos9
10 features :

. --- 12 features
14 features t1i%

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

b) Single Usable Classifier Performance

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

d) Percent of Usable Classifiers

Figure 5.12: Learn".MF Performance Results on DERMA Dataset

84

82

80It=0
78

76

74

72

: : - 8 features
, 10 features

--- 12 features
14 features

\

55

\-

-\

S00 I I !JUan
A203%.10

1%

T: 28% : 17%
- : 2%

135% t 31%

4 43% :417%:t. -,-,-,,, 1.. 6 %

---- *8 features :
....... 10 features
--- 12features :

14 features :
0 2. 5 7. i1 12. 15 17. 20 2. 5 75 3

70W

innl - · · · · · · I----zl

0
i i i i l l i i i D I

I

www.manaraa.com

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

a) Ensemble Performance

S 8 features
10 features

S--12 features
- -- 14 features

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

88

I uu
8 features

. 10 features
- 2features

- 418% 14 features
^*-^ *"-... N t . **4:100% : :

' tI:100%

1:%10 0%.

:94%t:

S82%t

63%?

100

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

n

d) Percent of Usable Classifiers

Figure 5.13: Learn".MFv2 Performance Results on DERMA Dataset

85

99

98

g 97

0)S96

D 95

94

92

86
84E

0 82

80

78

8 features
S.. 10 features

12 features
\\ 14 features

iNi

q?rl-n

4123% %
'4%

41%
428% 1%

: : :
: :

.1;11% ,
:

...... 435% . .

-- 8 features 'A3%
10 features

- --- 12 features
14 features

|3% -. :6%-1

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

b) Single Usable Classifier Performance

76

innI1 1 1 1 1 1 1 1 1 -----I-1

I I I I I - · ·

I

IUU

www.manaraa.com

5.2.6 Wisconsin Breast Cancer (WBC) Dataset

This database, originally created at The University of Wisconsin, Madison, was also

obtained from the UCI machine learning repository [71]. The database consists of 30

features from two classes of breast tumors: benign and malignant. Previous experiments

have shown that using optimized classifiers trained using all features tested on the test

dataset with no missing features can achieve 100%, setting the benchmark target for this

dataset. Learnm.MF and Learnm.MFv2 were evaluated by training classifiers using four

different nofs: 10, 12, 14, and 16 out of 30 available attributes. 1000 classifiers were

generated for this dataset. The performance results of both Learnm.MF and

Learnm.MFv2 on the WBC dataset are shown in Table 5.8. The general behavioral trends

of the algorithms Learnm.MF and Learnm.MFv2 can be seen in Figure 5.14 and Figure

5.15, respectively.

The performance results and figures, do not reflect any major differences on this

dataset between the two algorithms. Similar to the approach taken above for the DERMA

dataset, we generalize the discussion below to entail Learnm.MF and Learnm++.MFv2,

unless mentioned otherwise.

While both algorithms are able to achieve 95-96% correct classification when the

ratio of missing features is low, the ensembles trained on a larger nofexperienced a faster

rate of decline in terms of performance, as observed on previous datasets. The ensemble

performance of both algorithms for nof= 10/30 features was much higher (i.e. ~93-94%)

when 30% of the feature space was missing as opposed to lower ensemble generalization

performance (i.e. ~89%) of both algorithms for nof = 14/30 features. The generalization

performance of the ensemble trained on a lower nofhad a higher classification even when

86

www.manaraa.com

the ratio of missing features increased. However, the extent of the difference varies

between all datasets. We can relate the higher performance of the ensembles trained on a

lower nofto the number of usable classifiers. As the percent of missing features increase

in the dataset, the number of usable classifiers decreases for any nof. However, the

decline in the number of usable classifier is significantly steeper for ensembles trained on

a higher nofas seen in Figure 5.14d and Figure 5.15d, respectively. Hence, for any given

classifiable instance, an ensemble trained with a lower nof will be more likely to have

more usable classifiers to be able to classify it. This explains why ensembles trained on a

lower nof generally have a slower rate of decline in performance.

87

www.manaraa.com

Table 5.8: Learn".MF and Learn".MFv2 Performances of the WBC Dataset
(nof = 10/30) (nof = 12/30)

% Missing % v1 Mean % v1 % v2 Mean % v2 % v1 Mean % vl % v2 Mean % v2
Features Performance Process Performance Process Performance Process Performance Process

0.00% 95.50 +/- 0.00 100 97.00 ± 0.00 100 96.00 +/- 0.00 100 97.00 ± 0.00 100

2.50% 95.40 +/- 0.15 100 96.90 ± 0.28 100 95.75 +/- 0.19 100 96.60 ± 0.23 100

5.00% 95.55 +/- 0.36 100 96.80 ± 0.30 100 95.45 +/- 0.26 100 96.55 ± 0.26 100

7.50% 95.50 +- 0.24 100 97.00 ± 0.24 100 95.40 +/- 0.37 100 96.05 ± 0.49 100

10.00% 95.50 +/- 0.45 100 96.85 ± 0.51 100 95.65 +/- 0.29 100 96.15 ± 0.53 100

12.50% 94.90 +/- 0.56 100 96.30 ± 0.38 100 95.05 +/- 0.43 100 96.35 ± 0.41 100

15.00% 94.90 +/- 0.65 100 96.60 ± 0.41 100 94.64 +/- 0.58 100 96.04 ± 0.39 100

17.50% 94.74 +- 0.42 100 96.34 ± 0.50 100 95.04 +- 0.59 99 95.39 ± 0.33 99

20.00% 94.87 +- 0.62 99 96.53 ± 0.36 100 94.59 +/- 0.71 97 94.92 ± 0.65 97

22.50% 94.84 +/- 0.77 99 96.17 + 0.98 99 94.26 +/- 0.90 94 94.28 ± 0.75 94

25.00% 93.90 +/- 0.71 98 96.32 ± 0.57 98 94.32 +/- 0.99 91 94.44 ± 1.01 91

27.50% 93.66 /- 0.89 95 95.87 ± 1.01 95 91.52 +- 0.67 84 93.51 ± 1.11 84

30.00% 93.43 +/- 0.82 92 94.88 ± 0.81 92 91.89 +/- 1.10 75 92.18 ± 1.57 75

(nof = 14/30) (nof= 16/30)

% Missing % vl Mean % v1 % v2 Mean % v2 % v1 Mean % vl % v2 Mean % v2
Features Performance Process Performance Process Performance Process Performance Process

0.00% 95.50 ± 0.00 100 97.50 ± 0.00 100 95.00 ± 0.00 100 97.50 ± 0.00 100

2.50% 95.30 ± 0.30 100 97.00 ± 0.41 100 94.75 ± 0.25 100 97.45 ± 0.26 100

5.00% 95.20 ± 0.35 100 97.00 ± 0.41 100 94.60 ± 0.37 100 97.45 ± 0.26 100

7.50% 95.00 ± 0.45 100 96.95 ± 0.54 100 94.58 ± 0.14 100 97.19 ± 0.42 100

10.00% 95.00 ± 0.48 100 96.85 ± 0.41 100 94.11 ± 0.63 99 96.89 ± 0.70 99

12.50% 95.21 ± 0.89 99 96.68 ± 0.43 99 93.58 ± 0.75 97 96.20 ± 0.62 98

15.00% 94.60 ± 0.74 98 95.83 ± 0.76 98 93.16 ± 0.69 93 95.22 ± 1.13 94

17.50% 93.58 ± 0.72 95 95.10 ± 0.79 95 91.70 ± 1.50 88 94.95 ± 1.25 87

20.00% 93.00 ± 1.43 91 94.34 ± 0.79 91 91.35 ± 1.51 78 93.59 ± 1.44 79

22.50% 91.76 ± 1.05 85 93.38 ± 1.18 85 90.12 ± 0.88 68 93.44 ± 1.29 68

25.00% 89.25 ± 1.28 76 92.66 ± 1.80 76 90.01 ± 1.21 56 91.01 ± 1.48 57

27.50% 88.87 ± 1.62 67 91.10 ± 1.85 67 86.51 ± 1.33 46 90.63 ± 2.51 46

30.00% 90.57 ± 1.63 54 91.46 ± 1.22 54 89.08 ± 2.44 35 89.50 ± 2.88 37

88

www.manaraa.com

96
95

94

93

S 92

S 91
a)

90

89

88

87
2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

Percent of missing features %

a) Ensemble Performance

YN

\ 1N

\ -- 10 features
S12 features

' -- 14 features
:

-*16 features

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

:Voo\%

S\oo-98% :\

I I \ ^^^ \ v v-9219

78% \ *78%

S- - 10 features
....12 features
--- 14 features 34M

16 features

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

b) Single Usable Classifier Performance
100U

90

80

S70

S60

so!50

S40

I 30IM
20

10

0
0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

Percent of missing features %

d) Percent of Usable Classifiers

89

ne,

90

80

S70

60

_ 50co
S40

c 30

a 20

10

0

10 features
12 features

S---14 features
16 features

5) -
: <

»

Figure 5.14: Learn".MF Performance Results on WBC Dataset

06
85

84

S 83

S82

81

80

79

t3%

Si-2%

\ ,.-\ I ^
t4%

28%- .

-,,|, - - .. L ,:., -
V

-7%/ I ;

135% \ / - 16 features
S/ --- 14 features

S -410% 12 features
.

:
- - -10 features

0 Ml

www.manaraa.com

10U

90

80

S70

S60

50

S40
S30

S 20

10

0

98 9
97

S96

95
94

S93

92

c91l

90

00
0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

Percent of missinq features %

a) Ensemble Performance

*),
4)

S- -*-10 features
. * 12 features

--- 14 features
- - 16 features

- 0

o 2. . 0 1. 5 175 2 25 2 75 3

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

,99%

: '' i"*'oo'KS '^ . :
ls > <

- ^ .7% V2%1-7%
1 79% :

- \ '75%

* -- 10 features
54%

.. 12 features
- --- 14 features

16 features
:

37%

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

b) Single Usable Classifier Performance
100

90

80

8 70

S 60
0

S 50

40

30
20

10

0
0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

Percent of missing features %

d) Percent of Usable Classifiers

90

ný

S--- 10 features
.. .12 features

--- 14 features
- 16 features

.. . .

-..

Figure 5.15: Learn".MFv2 Performance Results on WBC Dataset

DG

84

.R
83

S 82

co
S81

20

80

79Q

218%

.3 1%444%)

-%:

4:28%

16 features
S ---14 features 1 /\ 3%

12 features
-- *10 features

rrr

A--

www.manaraa.com

5.2.7 Water Dataset

This benchmark database contains the daily measures from sensors in an urban waste

water treatment plant. The objective is to classify the operational state of the plant in

order to predict faults through the state variables of the plant at each of the stages of the

treatment process. T was set to 1000 classifiers. Previous trials using an optimized set of

classifiers trained on all features have shown near 80% performance results. The

algorithms were evaluated on 4 values of nof= 12, 14, 16 and 18 out of the 38 available

attributes.

The performance results of both Learnm.MF and Leamrn.MFv2 on the Water

dataset are shown in Table 5.9. The general trends of the algorithms Learnm .MF and

Leamrn.MFv2 can be seen in Figure 5.16 and Figure 5.17, respectively. We begin by

describing the performance and trends of the algorithm Learnm.MF. The performances

were very close to each other regardless of the number of features used. Learnm.MF was

able to reach at least 78% correct classification using 12-20 features for each classifier.

Note that the dynamic range in the performance axis for the ensemble and a single usable

classifier shown in Figure 5.16a and Figure 5.16b, respectively, are fairly narrow. While

the performances were similar for different number of features, the percent of instances

that could be processed by the respective ensembles were not. Similar to the previous

case, using fewer features for training allowed the algorithm to process a larger

percentage of the instances. The percent of usable classifiers for the 5 values of nofs used

on this dataset are in Figure 5.16d. Occam's Razor states that entities should not be

multiplied without necessity. Hence, in the case of using a dataset with redundant

features, training an ensemble with a lower nof may have additional benefits, as seen

91

www.manaraa.com

here. Once again we observe the percent of usable classifiers with an increase of missing

features introduced to the dataset favors the ensemble trained on fewer features.

Figure 5.17 describes the simulation results of the algorithm Leam ++.MIFv2 in a

similar manner described previously. From Table 5.9 and Figure 5.17a, indicate an

advantage in using Leamr+.MIFv2 on this dataset, when compared to its predecessor. The

ensemble performances of Leamr.1MFv2 achieve a 2-4% increase over its predecessor

with no features missing respectively. However, it is able to maintain this advantage for

some ratio of missing features as shown in Table 5.9. The Learn..MFv2 algorithm was

able to achieve the target performance of -80% for most of the nof values under

consideration. The ensemble performance for the Leam ++.MVIFv2 using a larger nof was

able to close the gap towards the target performance.

92

www.manaraa.com

Table 5.9: Learn".MF and Learn".MFv2 Performances on the Water Dataset
(nof = 12/38) (nof = 14/38)

% Missing % v1 Mean % v1 % v2 Mean % v2 % vl Mean % v1 % v2 Mean % v2
Features Performance Process Performance Process Performance Process Performance Process

0.00% 77.96 ± 0.00 100 79.42 ± 0.00 100 77.42 ± 0.00 100 79.96 ± 0.00 100

2.50% 77.85 ± 0.35 100 79.20 ± 0.41 100 77.42 ± 0.40 100 80.01 ± 0.28 100

5.00% 77.31 ± 0.24 100 79.20 ± 0.55 100 77.47 ± 0.49 100 79.26 ± 0.63 100

7.50% 77.63 ±0.37 100 78.99 ± 0.40 100 77.74 ± 0.58 100 79.58 ±0.70 100

10.00% 77.47 ± 0.73 100 79.26 ±0.41 100 76.56 ± 0.79 100 78.99 ± 0.86 100

12.50% 76.45 ±0.70 100 78.77 ±1.18 100 77.00 ±0.94 100 79.61 ±0.72 100

15.00% 76.60 ± 1.15 100 78.27 ± 0.60 100 76.90 ± 0.89 100 79.62 ± 1.15 100

17.50% 77.09 ± 0.90 100 78.43 ± 1.25 100 76.69 ± 0.98 98 78.90 ± 1.20 98

20.00% 76.57 ± 0.60 99 78.21 ± 1.02 99 77.73 ± 1.00 96 78.05 ± 1.00 97

22.50% 76.18 ± 1.04 98 77.72 ± 1.25 98 76.02 ± 2.26 91 77.75 ± 1.09 91

25.00% 74.79 ± 0.98 95 78.44 ± 1.90 95 73.89 ± 1.36 85 76.77 ± 2.36 85

27.50% 75.45 ± 1.79 89 77.47 ± 1.41 92 74.64 ± 2.11 77 77.21 ± 1.58 76

30.00% 74.93 ± 1.70 85 75.91 ± 1.37 85 73.39 ± 2.05 66 74.42 ± 2.19 67

(nof= 16/38) (nof= 18/38)

% Missing % vl Mean % v1 % v2 Mean % v2 % v1 Mean % v1 % v2 Mean % v2
Features Performance Process Performance Process Performance Process Performance Process

0.00% 77.42 ± 0.00 100 80.54 ± 0.00 100 77.96 ± 0.00 100 80.75 ± 0.00 100

2.50% 78.12 ± 0.51 100 80.81 ± 0.20 100 78.23 ± 0.37 100 81.45 ± 0.73 100

5.00% 77.69 ±0.87 100 81.62 ± 0.60 100 78.23 ± 0.61 100 80.81 ± 0.76 100

7.50% 77.80 ± 0.70 100 80.38 ±0.57 100 77.77 ± 0.71 100 81.04 ± 0.82 100

10.00% 77.09 ± 0.92 100 81.28 ± 0.74 100 77.75 ± 1.26 99 82.19 ± 0.64 100

12.50% 76.43 ± 0.71 99 81.47 ± 1.04 99 77.18 ± 0.35 97 81.16 ± 1.08 98

15.00% 77.42 ± 1.05 97 80.98 ± 0.89 97 77.26 ± 1.21 93 80.59 ± 1.52 94

17.50% 77.34 ± 1.26 95 80.81 ± 1.37 94 76.41 ± 2.27 87 79.63 ± 1.54 86

20.00% 76.36 ± 1.27 88 79.86 ± 1.56 88 76.61 ± 1.39 78 79.97 ± 1.79 77

22.50% 76.68 ± 1.97 80 78.36 ± 1.68 79 74.92 ± 1.65 64 77.78 ± 2.06 67

25.00% 77.19 ± 0.88 69 77.66 ± 3.01 69 74.71 ±3.36 51 80.60 ± 2.50 52

27.50% 74.50 ± 3.69 57 78.89 ± 3.09 56 76.03 ± 3.32 39 77.51 ± 3.58 41

30.00% 74.34 ± 3.81 45 79.49 ± 2.04 46 73.28 ± 4.55 28 78.18 ± 2.47 29

93

www.manaraa.com

/79

a) Ensemble Performance

0 5 10 15 20
Percent of missing features %

25 30

c) Percent of Processed Instances

1N- / w

12 features 4

. .. 14 features
16 features
18 features

:
2M

i 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

0 5 10 15 20
Percent of missing features %

25 30

d) Percent of Usable Classifiers

94

78

77OR
a) 76

E75,

74

b) Single Usable Classifier Performance

S--12 features

14 features

S 16 features \

-\18 features

\ N

\N'-." '.

N". *.

- - 12 features
14 features -

--- 16 features
- 18 features

V\
\\V

\-„- \
'n'__ . ____ ___ T ^ ^ L-;' i .- ^

Figure 5.16: Learn++.MF Performance Results on Water Dataset

-7i
77

76

75

74

73CD
S72

71
70

69

68

t15I 2%
4*-28% 3%-+ '%

- t23%
S -- 12 features 4
.....14 features

S---16 features
18 features

I 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missinq features %

-- I

731 67

I uu 1111

n n

www.manaraa.com

82

81

80

S79

I 7

77

76

75

7A
0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

Percent of missing features %

a) Ensemble Performance
l
90

.80

'60
I

60

I 50

S40

so 30

CD

E20

10

S12 features
. * 14 features
A

--- 16 features
\ - 18 features

VN .

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

77

- m
99%\ 7t" ^ e%

t t ioo ass

sbo% ,
S100%: 4:^^ y ^: : : t:'-Y ^s,/ V-27W297%

12 features
:

14 features
-- 16 features %

18 features
67%-*

69

90

80

S 70

S 60

a)

I50
40
o30

20

10

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

b) Single Usable Classifier Performance

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

d) Percent of Usable Classifiers

Figure 5.17: Learn".MFv2 Performance Results on Water Dataset

95

76

75

S74

73

L72

71

70

0'q

S-'-12 features
S..... 14 features
S---16 features

18 features

ILIL

\ -

\-

ti-iI I I I r i I I I 1 1 I ---I
- 12 features

S 14 features
--- 16 features

18 features

4-2
17%29%

-- / /

/„ _,.-1 ./ ''- A^ '-

| /f I-% .„ |.

I..., 129%i l V

--

t4-- -------i

innI i inI IUU

n nt

- - I

Y _1:1 - ___ __ ___ __

www.manaraa.com

5.2.8 Pen Digits Dataset

This benchmark database originated from Bogazici University, Istanbul, Turkey was

obtained from the UCI machine learning repository. It [71] consists of 10 digits, 0-9

having 16 attributes. The data was originally collected using a tablet. The tablet sends x

and y tablet coordinates and pressure level values of the pen at fixed time intervals

(sampling rate) of 100 milliseconds. Four values of nof were considered; 6, 7, 8 and 9,

out of 16, corresponding to 37.5%, 43.75%, 50% and 56.25% of the features,

respectively. T was set to 250.

The performance results of both algorithms are shown in Table 5.10. The general

behavioral trends of Learnm.MF and Learnm.MFv2 can be seen in Figure 5.18 and

Figure 5.19, respectively. The performance results and figures, do not reflect any major

differences on this dataset for between the algorithms. Again, we generalize the

discussion below to entail Learnm^.MF and Learnm.MFv2 for this dataset.

Both algorithms are able to achieve performance results in the 90% range for nofs

= 7,8 and 9/16. With 30% of the feature missing or corrupt, Learnm.MF suffers an 8-12%

drop in performance as opposed to the performance it achieved when few or no features

were missing. The same is generally true for Learnm.MFv2.

The percent of instances that can be processed should not vary much between the

algorithms, which is consistent with our other analyses. This is because both the

algorithms rely on the same Random Subspace Method for the selection of their features.

A single usable classifier trained on nof = 6/16 is able to process 12% of the instances,

whereas the Learnm^.MF and Learn*m.MFv2 ensemble trained on the same nof are able to

process 95% of the instances even when 30% of the features are missing.

96

www.manaraa.com

Table 5.10: Learn".MF and Learn".MFv2 Performances on the PEN Dataset

(nof = 6/16) (nof = 7/16)

% Missing % vl Mean % v1 % v2 Mean % v2 % v1 Mean % v1 % v2 Mean % v2
Features Performance Process Performance Process Performance Process Performance Process

0.00% 89.20 ± 0.00 100 89.60 ± 0.00 100 90.40 ± 0.00 100 92.60 ± 0.00 100

2.50% 88.98 ± 0.26 100 89.07 ± 0.21 100 89.82 ± 0.38 100 92.23 ±0.20 100

5.00% 89.04 ± 0.22 100 88.49 ± 0.39 100 90.02 ± 0.33 100 91.83 ± 0.34 100

7.50% 88.80 ± 0.47 100 88.15 ± 0.39 100 89.60 ± 0.53 100 91.23 ± 0.81 100

10.00% 88.28 ± 0.32 100 87.49 ± 0.57 100 89.21 ± 0.53 100 91.03 ± 0.49 100

12.50% 88.34 ± 0.40 100 87.10 ± 0.46 100 88.45 ±0.35 100 90.26 ± 0.39 100

15.00% 87.67 ± 0.71 100 86.70 ± 0.58 100 87.97 ± 0.53 100 89.52 ± 0.45 100

17.50% 86.98 ± 0.34 100 86.21 ± 0.50 100 87.27 ± 0.90 99 88.70 ± 0.83 99

20.00% 85.90 ± 1.05 99 85.78 ± 0.49 99 86.30 ±0.88 98 87.93 ± 0.89 98

22.50% 85.23 ± 0.74 99 84.42 ± 0.95 99 85.53 ± 0.77 97 87.10 ± 1.01 96

25.00% 84.81 ± 0.69 98 83.87 ± 0.87 98 84.29 ± 1.28 94 86.45 ± 0.51 95

27.50% 82.70 ± 0.56 97 83.31 ± 1.09 97 82.97 ± 1.07 91 84.95 ± 0.77 91

30.00% 81.67 ± 1.17 95 82.33 ± 0.84 95 81.39 1.24 88 84.22 ± 1.26 88

(nof = 8/16) (nof = 9/16)

% Missing % v1 Mean % v1 % v2 Mean % v2 % vl Mean % v1 % v2 Mean % v2
Features Performance Process Performance Process Performance Process Performance Process

0.00% 92.00 ± 0.00 100 93.00 ± 0.00 100 92.80 ± 0.00 100 94.00 ± 0.00 100

2.50% 91.70 ± 0.16 100 92.66 ± 0.23 100 92.64 ± 0.36 100 93.31 ± 0.30 100

5.00% 91.32 ± 0.21 100 91.98 ± 0.36 100 92.26 ± 0.23 100 92.99 ± 0.51 100

7.50% 90.96 ± 0.58 100 91.66 ± 0.44 100 91.65 ± 0.42 100 92.98 ± 0.46 100

10.00% 90.07 ± 0.50 100 91.53 ± 0.45 100 90.96 ± 0.67 99 91.40 ± 0.59 99

12.50% 89.79 ± 0.81 99 90.93 ± 0.91 99 90.79 ± 0.66 98 90.80 ± 0.59 98

15.00% 88.12 ± 0.53 99 89.58 ± 0.69 98 89.33 ± 0.54 97 89.27 ± 0.94 96

17.50% 87.87 ± 0.70 97 88.71 ± 0.77 97 88.99 ± 0.61 93 89.06 ± 0.81 93

20.00% 85.84 ± 0.66 96 87.47 ± 0.73 95 87.30 ± 0.72 90 87.86 ± 0.83 89

22.50% 84.59 ± 1.19 92 86.89 ± 0.77 92 86.12 ± 0.79 84 86.51 ± 1.17 85

25.00% 83.89 ± 1.00 88 86.17 ± 1.18 87 85.02 ± 0.98 77 84.35 ± 0.90 77

27.50% 83.16 ± 1.57 82 84.67 ± 1.17 83 84.36 ± 0.78 69 85.09 ± 1.22 69

30.00% 80.73 ± 1.11 76 83.92 ± 1.31 76 82.75 ± 1.15 61 83.04 ± 1.55 61

97

www.manaraa.com

94

92

90

CS 88
E

E66
0a

64

62

60
2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

Percent of missing features %

a) Ensemble Performance

6 features
...7 features

8 features
9 features

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

-- 6 features
... i 7 features

S--6features
: :'4 --: - 9 features

'k-76

100

90

80

S70

60

50

40

2 30

20

10

0

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

b) Single Usable Classifier Performance

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

d) Percent of Usable Classifiers

Figure 5.18: Learn +.MF Performance Results on PEN Dataset

98

n A

100

90

80

S70

S60

S50

40

S 30

S20

10

n

: : -- 6 features
- 7 features

8--- features
\ \ 9 features

M

N^.:- 1 1

- \;.

73
72

71

s 70

S69

066

67

66

65

: 3WA.1 .^ ''* :\ 416% : A '9. I ^ -16-6%
:13% tf

-.43%

S21%

-- 6 features
7 features

--- 8 features
9 features

63% '-12%:53% : 26%:

-70

www.manaraa.com

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

a) Ensemble Performance

-- 6 features :
....... 7 features

--- 8 features
- 9 features

0 i. 575 01251 17. 02252 27. 3

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

!J41
--- 6 features

... 7 features

99%%
---- 8 features

. 100% --- 9 features

' 100% 889J^ J 98
'^^^OOK,::95%
I 'f '*- . 19: : 9%'-^ 8i%

: ~ ~j 76 \ \ \^ 8%

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

b) Single Usable Classifier Performance

-- 6 features
7 features

- -- 8 features
\ 9 features

iN

| N i ,.

N ^ ^
<

'**^' *,

U0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

d) Percent of Usable Classifiers

99

73

S 72

71CO
S70

6 69

68

67

66

92

190

2?

2 88
c5
C860)
a-

84

82

100

9

t41

Figure 5.19: Learn".MFv2 Performance Results on PEN Dataset

65f

4-13%

39%
:4%

:417% t :

t43%:
S-21%

4 8%* 0

-- 6 features
7 . . 7features

- -8 features
- - 9 features 0453%42% 1 2%^-,^ ̂ ""T^ -. <-'* *^* ,, ̂ -' 12%

1001I I

1 1 .I

www.manaraa.com

5.2.9 Optical Character Recognition Dataset

Similar to the previous database, this dataset consisted of the digits 0 through 9.

However, they were digitized on an 8x8 grid creating 62 attributes for 10 classes. T was

set to 1000. Three values of nof were considered: 16, 20, and 24 features out of 62,

corresponding to 25.81%, 32.26% and 38.71% of the features respectively. Table 5.11

shows the performance of the Learnm.MIF and Learn..MFv2 on this dataset.

The results on this dataset clearly show the benefit of using an ensemble to

classify a dataset with missing features. While a single usable classifier trained using nof

=16 out of 62 features can only classify 19% of the dataset, an ensemble of classifiers

trained on the same nofcan classify 100% of the dataset with even up to 10% of the data

missing. As expected, the percent of usable classifiers that can be used to classify the

given dataset drops as the percent of missing features increases. While the performances

were similar for different number of features, the percent of instances that could be

processed by the respective ensembles were not. With 30% of the features missing, an

ensemble trained using 24 out of 62 features achieved 88% classification, processing only

9% of the dataset. However, an almost similar performance, 86% was achieved,

processing 63% of the dataset using an ensemble trained on 16 out of 62 features. One

may see the benefit in using an ensemble trained on a smaller nofas in this case. For the

three values of nof there was little or no performance drop, processing nearly all the

instances in the dataset even with up to 10% of the features missing.

Learnm .MIFv2 did not achieve significant increases in performances when the

ratio of missing features was relatively low. In fact, the performances were relatively

similar even up to 20% of the feature space. However, we noticed some interesting

100

www.manaraa.com

observations when comparing the performance drop between the algorithms for all values

of nof as the percent of missing features was increased. With 30% of the feature space

was missing, the Learn .MF achieved a performance of 86% compared to the

Learnm.MFv2, which was still able to retain performances at 91% when the nof under

consideration was 16/62. We see similar trends for all nofs when we compare the two

algorithms simultaneously.

TahIa r% 11 1%41P -"+ A " ̂ .^,aaiM++ 2 41Pu7 Toxfn^^mina ni tho fICR Dt nept
a e . : earn . an ea

v

(nof= 16/62)
% vl Mean % vl % v2 Mean % v2

Performance Process Performance Process

96.80 ± 0.00 100 96.80 ± 0.00 100

96.75 ± 0.11 100 96.52 ± 0.13 100

96.46 ± 0.15 100 96.32 ± 0.17 100

96.29 ±0.22 100 96.15 ± 0.26 100

96.17 ± 0.18 100 96.12 ± 0.17 100

95.85 ±0.22 100 95.76 ± 0.30 100

95.37 ±0.30 100 95.47 ± 0.29 100

94.49 ± 0.38 99 94.72 ± 0.35 99

93.22 ±0.47 97 94.49 ± 0.37 98

91.82 ±0.60 93 93.44 ± 0.49 93

89.37 ± 0.76 87 92.34 ± 0.32 86

88.36 ± 0.89 75 93.22 ± 0.47 75

86.47 ± 0.93 63 91.82 ± 0.61 63

(nof= 24/62)

% Missing
Features

0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

15.00%

17.50%

20.00%

22.50%

25.00%

27.50%

30.00%

% Missing
Features

0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

15.00%

17.50%

20.00%

22.50%

25.00%

27.50%

30.00%

L CV %VJ% XAILLX "U VA Vb

(nof = 20/62)
% v1 Mean % vl % v2 Mean % v2

Performance Process Performance Process

96.80 ± 0.00 100 97.10 ± 0.00 100

96.98 0.15 100 96.95 ± 0.12 100

96.84 ±0.14 100 96.85 ± 0.17 100

96.84 ± 0.24 100 96.77 ± 0.13 100

96.22 ± 0.20 100 96.42 ± 0.27 100

95.49 ± 0.28 99 96.04 ± 0.26 99

94.87 ±0.42 97 95.10 ± 0.30 97

93.38 ± 0.67 93 93.64 ± 0.39 92

91.83 ± 0.52 83 93.38 ± 0.67 84

90.69 ± 0.69 70 91.67 ± 0.46 70

89.45 ± 0.54 55 91.83 ± 0.52 54

88.29 ± 0.70 40 90.77 ± 0.82 36

87.95 ± 1.72 26 90.70 ± 0.69 19

101

% v1 Mean % v1 % v2 Mean % v2
Performance Process Performance Process

97.50 ± 0.00 100 97.40 ± 0.00 100

97.41 ± 0.06 100 97.38 ± 0.16 100

97.19 ± 0.16 100 97.24 ± 0.13 100

96.97 ± 0.18 100 96.25 ± 0.25 100

96.42 ± 0.33 99 96.28 ± 0.24 99

95.12 ± 0.42 95 96.37 ± 0.39 96

93.81 ± 0.34 88 96.42 ± 0.33 88

92.78 ± 0.72 75 94.88 ± 0.42 75

91.58 ± 0.55 58 95.12 ± 0.42 59

89.90 ± 0.89 42 93.81 ± 0.34 42

89.14 ± 0.96 28 92.78 ± 0.72 27

88.51 ± 1.76 17 91.58 ± 0.55 16

86.09 ± 1.47 9 89.90 ± 0.89 8

www.manaraa.com

94

92

90

88

YE
cc

98

a) Ensemble Performance
100

90-

70

0 -16 features

40 -20 features
24 features30 -

20

10:

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

.... 16 features
20 features

100%

t 2610

Pcen of missi n fe3%-%

D 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missinq features %

80
0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

Percent of missing features %

b) Single Usable Classifier Performance
100

.16 features
90 --- 20 features

24 features
80

S 50

40
60

1 0

4030 ..

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

d) Percent of Usable Classifiers

Figure 5.20: Learn".MF Performance Results on OCR Dataset

102

,---I__

87

86

S85

84
E

L83

82

81

800
,,

t1%

ell 12% 1 N

16 features
-- 20 features

24 features

e-3% 4
HE

www.manaraa.com

!JU
97

96

96

a 94

E
S93

0-
92

91

90

89
0 2.56 5 7.5 10 12.5 16 17.6 20 22.5 25 27.5 30

Percent of missing features

a) Ensemble Performance
1L0

90

80

S70

60

L) 50
40

| 30

CL 20

10

0

16 features
20 features 0
24 features

05:

0 2.5 5 7.5 10 12.5 16 17.5 20 22.5 26 27.56 30
Percent of missing features %

c) Percent of Processed Instances

- 16 features
- - - 20 features

'Q
100

%" 24 features

; | s%\ 'K -'' ' 93%
I I I I IIr

1uu100
90

80

S70

60a)
S 50

40

30

20

10

0-

Percent of missing features %

b) Single Usable Classifier Performance

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 26 27.5 30
Percent of missing features %

d) Percent of Usable Classifiers

Figure 5.21: Learn".MFv2 Performance Results on OCR Dataset

103

87

86

85
S 84

83

82

81

80

791c

1%

tl%
41%

t 12% : %

--- 16 features
--- 20 features

- 24 features

- 19% ' 1%-

... 16 features
- --- 20 features

24 features

05

05

05

05

- 1

05

00

I 2.5 6 7.5 10 12.6 15 17.5 20 22.5 25 27.5 30

00

www.manaraa.com

5.2.10 E-coli Dataset

This database was created by the Institute of Molecular and Cellular Biology, Osaka,

Japan, to predict the localization of protein sites, and it is available from the UCI machine

learning repository [71]. This dataset had 7 features, however two features were removed

as they were mostly constant values and did not provide discriminatory information to the

network. Previous trials using optimized classifiers trained on all the remaining features

have allowed us to achieve performances in the 89-90% range, setting the benchmark for

this dataset. The algorithms were evaluated by training classifiers using two different

values of nofs, 2 and 3 out of the 5 available attributes. 100 classifiers were generated for

this dataset.

Table 5.12 summarizes the test performance for both algorithms Learnm.MF and

Learn+m.MFv2. Figure 5.22 and Figure 5.23 provide more insight into the behavior of the

algorithms on this dataset. Learnm.MF achieves 73% and 85% classification on nofs =

2/5 and 3/5 respectively when no features were missing in the dataset. The proximity of

this number to the target 89-90% (obtained when all 5 features where used) range

especially for the case when nof=3/5, indicates that this dataset does include redundant

features. These figures dropped to 71% and 81% for the respective nofs when 30% of the

features were missing. A single usable classifier trained on nofs = 2/5 and 3/5 maintained

64% and 76% respectively even when 30% of the features were missing.

LeTarn iMFv2 was able to achieve 76% and 86% classification when no features

were missing. The performance of a single usable classifier trained on nofs = 2/5 and 3/5

did not vary from its predecessor. Also, the percent of instances classified by the

ensemble did not vary from the former algorithm.

104

www.manaraa.com

Table 5.12: Learn"'.MF and Learn++.MFv2 Performances on the Ecoli Dataset
(nof= 2/5) (nof = 3/5)

% Missing % v1 Mean % v1 % v2 Mean % v2 % v1 Mean % vl % v2 Mean % v2
Features Performance Process Performance Process Performance Process Performance Process

0.00% 73.04 ± 0.00 100 75.61 ± 0.00 100 85.22 ± 0.00 100 86.09 ± 0.00 100

2.50% 72.52 ± 0.94 100 75.35 ± 0.88 100 84.87 ± 0.43 100 85.83 ± 0.59 100

5.00% 73.04 ± 1.21 100 75.44 ± 1.05 100 85.01 ± 1.03 100 85.04 ± 0.76 100

7.50% 73.30 ± 1.02 100 74.66 ± 0.68 100 83.72 ± 0.97 99 84.17 ± 1.34 98

10.00% 72.78 ± 1.47 100 74.66 ± 1.15 100 84.71 ± 1.47 97 84.70 ± 0.67 97

12.50% 73.13 ± 1.48 100 74.57 ± 1.75 100 83.86 ± 1.18 97 83.91 ± 1.11 97

15.00% 72.70 ± 1.71 100 74.05 ± 1.60 100 83.99 ± 2.04 96 83.48 ± 1.78 96

17.50% 72.78 ± 1.52 100 74.13 ± 1.21 100 81.85 ± 2.33 93 82.61 ± 1.49 93

20.00% 73.04 ± 1.34 100 74.22 ± 2.01 100 82.36 ± 1.77 89 81.91 ± 1.68 89

22.50% 73.04 ± 1.21 100 73.87 ± 2.31 100 83.04 ± 2.08 88 82.35 ± 1.90 87

25.00% 71.65 ± 1.35 100 73.00 ± 1.88 100 82.48 ± 1.06 81 80.87 ± 1.17 82

27.50% 72.09 ± 2.06 100 73.87 ± 1.81 100 81.64 ± 1.78 78 80.09 ± 2.91 76

30.00% 71.22 ± 1.51 100 73.79 ± 1.67 100 80.65 ± 3.00 72 79.74 ± 2.13 73

105

www.manaraa.com

84

82

80

78

76

74

72

70

100

90

S80

m 70

S 60.o
'S 50

40

30

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missina features %

a) Ensemble Performance

---2 features
3 features

0 . 5 7. 1 125 1 175 2 225 5 2.5 3

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

bb
97% 2 features: -v ^* ^^- 3 features -

t9% 89

.72%

.
4

00% i100%

: ' <*: ~ ~ ~ ~ ,; '-^*^0

90

580

S 70

60

~50

L 40

30

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

d) Percent of Usable Classifiers

Figure 5.22: Learn".MF Performance Results on Ecoli Dataset

106

76

74

S72

70

68

66

64

PrI I

--- 2 features
-. - 3 features .

IN

78
4140%

: ; : -- 2 features- 3 features

481% 40`8 64%:4 48%
- . - .

ililli.;iNio

I

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

b) Single Usable Classifier Performance

U I

--- ---I Iiu. I

20 I 20'Z r_ ___ __ ___ __

www.manaraa.com

1uu

90

80

70

60

50

S 40

30

S- 2 features
3 features -

97%

T 89%

473%-

1 4 100% : 100%- -- ^ \ -| |"" ..

* i i l l" i l ̂ I
0 2.5 5 T75 10 12.5 15 17.5 20 22.5 25 27.5 30

Percent of missing features %

a) Ensemble Performance

-- 2 features
3 features

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

c) Percent of Processed Instances

'U

76

74

S72

70

68

66

64

0 2.5 56 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

b) Single Usable Classifier Performance

90

S? 80

S 70

460

350

IL 40

30

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
Percent of missing features %

d) Percent of Usable Classifiers

Figure 5.23: Learn".MFv2 Performance Results on Ecoli Dataset

107

86

84

S82

S80

S78

76

74

f13%

't-35%

- 3 featje

-po 1 - 64%:
oo lt48%

--- 2 features
- 3 features -

AAtjj --

72 ki

4mm I,I lw q

2u ---i 211
iI
I

www.manaraa.com

5.3 Summary of Learnm+.MF and Leam++.MFv2

5.3.1 Summary ofLearn .MF

* The algorithm performs remarkably well on classifying data with missing features,

with little or no performance drop, with approximately 10-15% of missing features

when compared to classifying data with all features intact.

* The choice of the parameter nof presents a trade-off: higher classification

performance is normally obtained using a larger nof, particularly when fewer

features are missing. However, the performance drops more rapidly as the percent

of missing features increase, compared to using a smaller nof.

* Smaller nof also results in fewer instances left unprocessed and larger number of

usable classifiers, for any given ratio of missing features.

* The algorithm is not able to process all instances for certain values of nof.

5.3.2 Summary ofLeam+rn +.MFv2

Most of the above arguments for Learnm.MF hold true for Leam ++.MFv2 as well. We

now point out some of the trends of Learnm.MFv2.

* An ensemble trained on a lower nofwas able to match some of the performances of

ensembles trained with a larger nof under Leamr .MF.

* With the exception of a few datasets, any initial performance boost provided by the

modifications in Leamr .MFv2 was generally lost when the ratio of missing

features increased.

108

www.manaraa.com

5.4 Evaluation of Learn".MF and Learn"m.MIFv2

Two algorithms, Learnm.MF and Learnm.MFv2, have been proposed as possible

solutions to the missing feature problem. The algorithms create an ensemble of

classifiers, each trained with a random subset of the features, so that any instance with

missing features can still be classified using classifiers that did not use those missing

features in their training. We have randomly created missing or corrupt data with 0 to

30% of features missing. Thus far, the algorithms have performed remarkably well with

negligible or virtually no performance drop for up to 10%-15% of the features missing

for most of the datasets that we have. We do observe performance drop as more features

become missing. This is especially true when up to 30% of the feature pool is corrupt or

missing.

The number of classifiers that need to be generated and cardinality of the feature

subsets are important parameters of both algorithms. In general, a relatively large number

of classifiers should be generated to ensure that sufficient number of classifiers is

available for as many possible combinations of features as possible. The computational

burden is not as excessive as it might appear, however, as a typical run on the 34 feature

datasets (ION and DERM) needed only a couple of hours to train 1000 classifiers on a P4

machine equipped with 2.0 GHz processor and 512 MB RAM. This is, in part, due to the

fact that individual classifiers are relatively weak, obtained by using a small network

architecture and high error goal. Hence, each can be trained with relatively little

computational burden. In fact, one can argue that - under the assumption of a redundant

feature space - random subset selection is quite efficient: An exhaustive run on training

with every possible combination of, say, 8 features out of 34 would have normally

109

www.manaraa.com

required 18,156,204 classifiers, though the algorithms performed remarkably well with

only 1000.

Of course, as described earlier, there are algorithms that use far fewer classifiers

than Learnm .MF and Learn.MIFv2. For example, combining one-class classifiers

trained on single feature at a time can handle any combination of missing features using

the fewest possible classifiers (number of features time number of classifiers); however,

as shown in the DERMA dataset, the generalization performance suffers significantly due

to insufficient distinguishing ability of single features. Conversely, Learnm.MF and

Learnm.MFv2 do not claim capability of handling all possible combinations of missing

features, but it can typically process - and usually correctly - a substantial large portion

of the data, provided that a reasonably sufficient number of classifiers are trained, and,

the main assumptions of the algorithm are met.

The second free parameter is the number of features (nofs) used to train individual

classifiers. In order to obtain a general rule of thumb on proper selection of this

parameter, we have analyzed the impact of this parameter on the overall performance as

well as on the proportion of instances that can be processed. As described in the earlier

section, using a larger number of features for training typically provides better

performance when the percent of missing features is less than 10-15%. However, as the

percent of missing features increases, the overall performance and the proportion of

instances that can be processed by the ensemble drops rapidly. Using fewer features for

training, on the other hand, typically provides a more stable performance with a more

gradual drop both in performance and ratio of instances that cannot be processed. These

results suggest that a near-optimum number of features can be selected if approximate

110

www.manaraa.com

percent of missing features is known ahead of time. While the specific value depends on

the application, the number of features we have used was typically in the 15% to 50%

range of the total feature pool.

In recognition of the no-free-lunch theorem [72], we acknowledge that any

algorithm is effective only to the degree its characteristics match those of the data. In the

case of well-established techniques such as Bayesian estimation and expectation

maximization, this translates into restrictions on dimensionality, prior knowledge of

underlying distributions, and/or availability of sufficiently dense training data.

Alternatively, instead of trying to estimate the missing values (and potentially err on this

estimation) and introduce bias within the data, Learnm.MF and Learn .MFv2 try to

make the most of the available data.

The restrictions for both algorithms are on the feature sets: first, the algorithms

assume that the dataset includes an unknown number of redundant features, and that

fewer than the number of available features are in fact adequate to describe the data. The

redundancy of the features is not within the feature space and is dispersed across the

features. Of course, the number and identities of the redundant features are unknown to

us, since they would not have been part of the data otherwise. In other words, the features

must not be part of a time-series data. Therefore, signals such as raw electrocardiogram

(ECG), cannot be used with this algorithm, however, specific features extracted from the

ECG (such as maximum amplitude, area under the QRS complex, rise time and fall time

of the QRS complex, etc.) can be used.

It is those applications that meet these two criteria for which the algorithms

Learnm.MF and Learnm.MFv2 are expected to be most effective. Fortunately, such

111

www.manaraa.com

applications are abundant in real world: many practical applications that use a set of

different sensors (e.g., temperature, speed, humidity, load, temporal differences between

events, etc.) to monitor a physical condition typically meet these conditions. Therefore,

the algorithm would be particularly useful, when one or more of the sensors malfunction,

or when some of the data become corrupted.

112

www.manaraa.com

CHAPTER 6 - CONCLUSIONS

This chapter has been divided into three sections. Section 6.1 provides a synopsis of the

previous content mentioned in the earlier chapters. Section 6.2 outlines of the

accomplishments of the research involved in this thesis, and lastly Section 6.3 provides

recommendations and guidelines for future work.

6.1 Synopsis of Thesis

Chapter 1 presented the problem of the missing values in datasets. Chapter 2 described

the taxonomy of the general techniques used to solve or counter the missing feature

problem. The advantages and disadvantages for these methods were also discussed.

Chapter 3 provided an introduction to ensemble based systems detailing some of the

reasons for the success of such approaches. This was followed by a brief introduction to

two ensemble techniques, AdaBoost.M1 and Learn". The Random Subspace Method, a

core technique in the two algorithms presented in this thesis was also discussed. Chapter

4 formally introduced the Learn".MF and Learn *.MFv2, two ensemble approach

algorithms based on the Random Subspace Method to classify data with missing features.

Chapter 5 discussed the results of both the algorithms on multiple real world and

benchmark datasets.

113

www.manaraa.com

6.2 Summary of Accomplishments

This goal of this thesis was to evaluate the feasibility of two similar ensemble-based

techniques designed specifically for the missing feature problem. The principal

contributions along with the original objectives (mentioned in chapter 1) are revisited

below:

1. To implement an ensemble approach based on the Random Subspace Method for

the feasibility of the Missing Feature Problem. The Learnm.MF selects a subset

of the feature space in an autonomous pseudorandom manner and trains a

classifier on that subset of features. It then reselects another subset of the feature

space and trains another classifier. It does this for a predetermined number of

iterations. During validation or testing, it uses only classifiers from its original

ensemble trained on features not missing for the particular instance for testing.

2. To investigate the effects of using such a method for the Missing Feature

Problem on multiple real world applications and benchmark datasets. The

algorithm Learnm.MF was evaluated under various conditions by simulating

missing features by randomly corrupting the data in each of this datasets. In each

of these cases, T, the number of classifiers was kept constant for the specific

datasets under investigation. The algorithm was also evaluated using various

subsets of the original feature space, mostly in the 15-50% range.

114

www.manaraa.com

3. To investigate possible modifications to the former algorithm Learnm.MF to

attempt to boost its performance using established techniques such as weighted

combination rules. Learnm.MFv2 was designed specifically with the intention of

possible performance boosting. It attempts to take advantage of the local

expertise of each of the classifiers with respect to their class specific performance

during training. It also introduces a decision boundary to aid its decision making

process. The algorithm Learnm.MFv2 was evaluated on the same datasets under

the same conditions imposed on the predecessor algorithm.

6.3 Recommendations and Directions for Future Work

There are a number of areas where future work may be performed on the algorithms

Learnm.MVIF and Learn..MIFv2. Inherently, the latter can be viewed as a superset of the

former algorithm, so some of the existing shortcomings faced by the original algorithm

were faced by the modified version as well.

This includes the notable decrease in the ensemble performance as the ratios of

missing features are increased into the dataset. Although the algorithms do manage to

maintain a reasonable performance when close to when no features are missing initially

for a certain percentage of missing features, the ensemble performance drops as a larger

ratio of missing features are introduced into the datasets. This is generally the case for all

the datasets that the algorithms were evaluated on. Both of the algorithms are heavily

dependent on the number of classifiers to classify any given instance. The success of

weak classifiers resides in their ability to introduce sufficient diversity to compensate for

their accuracy. Since the number of usable classifiers for any given instance is reduced

115

www.manaraa.com

each time more features become corrupt in the dataset, their diversity is reduced and

along with it their accuracy which explains for the decrease in performance as the ratio of

missing features are increased. Hence, it is recommended that the stronger classifiers be

trained. However, this should be done with care so as not to introduce overfitting.

Future work may include a theoretical analysis of the algorithms to better

establish a link among the number of features used, percent missing features, percent data

that can be processed, and the number of classifier required to achieve a meaningful

performance. Such an analysis may provide further insight to further optimize the

algorithm.

116

www.manaraa.com

REFERENCES

1. V. Tresp, R. Neuneier, S. Ahmad, "Efficient methods for dealing with missing
data in supervised learning," G. Tesauro, et al. (eds), Adv. in Neural Inf Proc.
Sys. 7. MIT Press, 1995.

2. A. Morris, M. Cooke, P, Green, "Some solutions to the missing feature problem
in data classification, with application to noise robust ASR," Proc. Int. Conf
Acoustics, Speech, and Signal Proc., vol. 2, pp: 737 - 740, 1993.

3. A.P. Dempster N.M. Laird and D.R. Rubin, "Maximum-likelihood from
incomplete data via the EM algorithm (with discussion)," Jour. of the R. Statist.
Soc., Series B, pp. 1-38, 1997.

4. M. Jordan, R.Jacobs, "Hierarchical mixtures of experts and the EM algorithm,"
Neural Comp., vol.6, no. 2, pp. 181-214, 1994.

5. G.J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley, New
York, 1992.

6. X.L. Meng and S. Pedlow, "EM: a bibliographic review with missing articles,"
Proc. Statist. Comput. Sect. Am. Statist. Ass., pp. 24-27, 1992.

7. R. Duda, P. Hart, D.Stork, Pattern Classification, 2 nd edition, Wiley-Interscience,
New York, NY, 2001.

8. M. Skurichina and R Duin, "Combining Feature Subsets in Feature Selection,"
LNCS 3541, pp. 165-175, 2005.

9. R. E. Tarjan, "Depth first search and linear graph algorithms," SIAM Jour. on
Comp., 1(2), pp.146-160, 1972.

10. D. Motter and I. Markov, "A Compressed Breadth-First Search for Satisfiability,"
Proc. ALENEX 2002, 2002.

11. W. Morgan, W. Greiff and J. Henderson. Direct Maximization of Average
Precision by Hill-Climbing, with a Comparison to a Maximum Entropy
Approach. Tech. Report. MITRE Corporation.

12. Morin, R.L., Raeside, D.E.: A reappraisal of distance-weighted k-nearest neighbor
classification for pattern recognition with missing data. IEEE Trans. Syst. Man
Cybern, 11, pp. 241-243, 1981.

117

www.manaraa.com

13. 0. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D.
Botstein, and R.B. Altman, "Missing value estimation methods for DNA
microarrays," Bioinformatics,vol.17, no. 6, pp. 520-525, 2001.

14. S. Oba, M. Sato, I. Takemasa, M. Monden, K. Matsubara, S. Ishii, "A Bayesian
missing value estimation method for gene expression profile data,"
Bioinformatics, vol.19, no. 16, pp. 2088-2096, 2003.

15. K.L. Wagstaff, V.G. Laidler, "Making the most of missing values: object
clustering with partial data in astronomy," 14 th Astronomical Data Analysis and
Systems Conf., P. L. Shopbell, M. C. Britton, and R. Ebert, Eds., Vol. XXX, P
2.1.25, 2005.

16. J.M. Brick, G. Kalton, and J.K Kim, "Variance estimation with Hot Deck
imputation using a model," Survey Methodology, vol.30, no. 1, June 2004.

17. D. Curran, G. Molenberghs, P.M. Fayers and D. Machin, "Incomplete quality of
life data in randomized trials: missing forms," Statistics in Medicine, vol. 17, no.
5, pp. 697-709, 1998.

18. R.J.A. Little and D.B. Rubin. Statistical analysis with missing data. 2edn. ISBN 0-
471-18386-5. Wiley Interscience, 2002.

19. R.J.A. Little, "Consistent regression methods for discriminant analysis with
incomplete data," J. Amer. Statist. Assoc., vol. 73, pp. 319-322, 1978.

20. P.D. Allison. Missing Data. Sage University Paper Series on Quantitative
Applications in the Social Sciences, series 7, no. 136, 2001.

21. S. Zhang, Z. Qin, C.X. Ling and S. Sheng, "Missing is Useful: Missing Values in
Cost-Sensitive Decision Trees," IEEE Trans. on Knowledge and Data
Engineering, vol. 17, no. 12, 2005.

22. C.X. Ling, Q. Yang, J. Wang, and S. Zhang, "Decision Trees with Minimal
Costs," Proc. 21st Int'l Conf Machine Learning (ICMLO4), 2004.

23. P.Juszczak and R.P.W. Duin, "Combining One-Class Classifiers to Classify
Missing Data," LNCS 3077, pp.92-101, 2004.

24. A.Gupta and M. Lam, "The weight decay backpropagation for generalizations
with missing values," Annals of Operations Research, vol. 78, no. 1, pp. 165-187,
1998.

118

www.manaraa.com

25. H. Schoner. Working with Real Datasets. PhD Thesis. Berlin Univ. of
Technology, Berlin, 2004.

26. H. Schoner, "Working with Real-World Datasets," PhD Thesis, Berlin University
of Technology, 2004.

27. L.I. Kuncheva, Combining Pattern Classifiers, Methods and Algorithms, New
York, NY: Wiley Interscience, 2005.

28. D. Parikh, M.T. Kim, J. Oagaro, S. Mandayam, and R. Polikar, "Ensemble of
Classifiers Approach for NDT Data Fusion," IEEE International Ultrasonics,
Ferroelectrics,and Frequency Control Joint 50th Anniversary Conf, pp. 1062 -

1065, 2004.

29. A.J.C. Sharkey, "On Combining Artificial Neural Nets," Connection Science,
Special Issue on Combining Artificial Neural Networks: Ensemble Approaches 8
(3,4) pp. 299-314, 1996.

30. J. Kittler, M. Hatef, R.P. Duin, J. Matas, "On combining classifiers," IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 20, no.3., pp. 226-239, 1998.

31. L.I. Kuncheva, "A theoretical study on six classifier fusion strategies", IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol.24, no.2, pp. 281-286,
2002.

32. Y. Freund and R.E. Schapire, "Decision-theoretic generalization of on-line
learning and an application to boosting," J. of Comp. and System Sci., vol. 55, no.
1, 119-139, 1997.

33. L. Didaci and G. Giacinto, "Dynamic Classifier Selection by Adaptive k-Nearest-
Neighborbood Rule," MCS 2004, LNCS 3077, pp. 174-183, 2004.

34. L.I. Kuncheva, "Diversity in multiple classifier systems," Information Fusion 6,
3-4, 2005.

35. A. Tsymbal, M. Pechenizkiy, and P. Cunningham, "Ensemble clustering in
medical diagnostics," Proc. of the 1 7 th IEEE Symposium, pp. 576 - 581, 2004.

36. R.E. Banfield, L.O. Hall, K.W. Bowyer, and W.P. Kegelmeyer, "A New
Ensemble Diversity Measure Applied to Thinning Ensembles," Int. Workshop on
MCS, pp. 306-316, 2003.

119

www.manaraa.com

37. D. Greene, A. Tsymbal, N. Bolshakova, and P. Cunningham. Ensemble
Clustering Medical Diagnostics. Technical report, Trinity College, Dublin, 2004.

38. M. Skuruchina and P.W. Duin, "Bagging, Boosting and the Random Subspace
Method for Linear Classifiers," Pattern Analysis and Applications, no. 5, pp. 121-
135, 2002.

39. N. Rooney, D. Patterson, A. Tsymbal and S. Anand, Random Subspacing for
regression ensembles. Technical report. Trinity College, Dublin, 2004.

40. R.Schapire, "The strength of weak learner," Machine Learning, vol. 5, pp. 197-
227,1990.

41. K. Tieu and P. Viola, "Boosting image retrieval," IEEE Conf on Computer Vision
and Pattern Recognition 2000, pp. 148-235, 2000.

42. Y. Freund and R. E. Schapire, "Decision-theoretic generalization of on-line
learning and an application to boosting," J. of Comp. and System Sci., vol. 55, no.
1, pp. 119-139, 1997.

43. N.C. Oza, "Boosting with Average Weight Vectors," MCS: 4th Intl. Workshop,
pp. 15-24, 2003.

44. N.C. Oza and S.J. Russell, "Experimental comparisons of online and batch
versions of bagging and boosting," Knowledge Discovery and Data Mining, pp.
359-364, 2001.

45. S. Grossberg, "Nonlinear neural networks: principles, mechanisms and
architectures," Neural Networks, vol.1, no. 1, pp. 17-61, 1988.

46. A. Kulakov and D. Davcev, "Tracking of Unusual Events in Wireless Sensor
Networks Based on Artificial Neural-Networks Algorithms," Int. Conf on
Information Technology, vol. 2, pp. 534-539, 2005.

47. A. Gangardiwala and R. Polikar, "Dynamically weighted majority voting for
incremental learning and comparison of three boosting based approaches," Proc.
of Int. Joint Conference on Neural Networks (IJCNN 2005), vol. 5, pp. 1331-
1336, Montreal, QB, 2005.

48. R. Polikar, L. Udpa, S. Udpa, V. Honavar, "Learn++: An incremental learning
algorithm for supervised neural networks," IEEE Transactions on System, Man
and Cybernetics (C), Special Issue on Knowledge Management, vol. 31, no. 4, pp.
497-508, 2001.

120

www.manaraa.com

49. R. Polikar, S.Krause, L. Burd, "Dynamic weight update in weighted majority
voting for Learn"," Proc. of Int. Joint Conference on Neural Networks (IJCNN
2003), vol. 4, pp. 2770-2775, Portland, OR, 20-24 July 2003.

50. M. Lewitt and R. Polikar, "An ensemble approach for data fusion with Learnm,"
4th Int. Workshop on Multiple Classifier Systems (MCS 2003), Springer LINS vol.
2709 , pp. 176-185, Surrey, England, June 11-13 2003.

51. H. Syed Mohammed and R. Polikar, "Comparison of Ensemble Techniques under
Different Combination Rules for Incremental Learning of New Concept Classes,"
Technical Report, Rowan University, 2005.

52. M. Mulbhaier, A. Topalis, and R. Polikar, "Leamr .MT: A New Approach to
Incremental Learning," MCS 2004, LNCS 3077, pp. 52-61, 2004.

53. D. Opitz, "Feature Selection for Ensembles," In Proc. of 16 th National Conf on
Artificial Intelligence, AAAI Press, pp. 379-384, 1999.

54. A. Tsymbal, P Cunningham, M. Pechenizkiy and S. Puuronen, "Search strategies
for ensemble feature selection in medical diagnostics," Proc. of the 16 th IEEE
Symposium, pp. 124 - 129, 2003.

55. T. K. Ho. "The random subspace method for constructing decision forests," IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 20(8) pp. 832--844,
1998.

56. T. K. Ho. "Random decision forests," In 3 rd Intl. Conf on Document Analysis and
Recognition, pp. 278-282, 1995.

57. M. Skurichina. "Stabilizing weak classifiers," PhD Thesis, Delft University of
Technology, Delft, The Netherlands, 2001.

58. A. Bertoni, R. Folgieri, and G. Valentini, "Bio-molecular cancer prediction with
random subspace ensembles of Support Vector Machines," NETTAB 2004,
Workshop on Models and Metaphors from Biology to Bioinformatics Tools, 2004.

59. N.V. Chawla and K.W. Bowyer, "Random subspaces and subsampling for 2-D
face recognition," CVPR 2005, vol. 2, pp. 582 - 589, 2005.

60. X. Wang and X. Tang, "Using Random Subspace to Combine Multiple Features
for Face Recognition," 6 th IEEE International Conf on Automatic Face and
Gesture Recognition, p. 284, 2004.

121

www.manaraa.com

61. E. Pekalska, M. Skurichina and R.P.W. Duin, "Combining Fisher Linear
Discriminants for Dissimilarity Representations," LNCS 1857, pp. 117-126, 2000.

62. A. Tsymbal, S. Puuronen, and D.W. Patterson. Ensemble Feature Selection with
the Simple Bayesian Classification. Technical report. Trinity College, Dublin,
2004.

63. J. Zhang and Y. Liu. SVM decision boundary based discriminative subspace
induction. Technical Report. The Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, 2002.

64. X. Wang and X. Tang, "Random Subspace Based LDA for Face Recognition,"
Proc. of CVPR, 2004.

65. R.E. Banfield, L.O. Hall, K.W. Bowyer, D. Bhadoria, W.P. Kegelmeyer and S.
Eschrich, "A Comparison of Ensemble Creation Techniques," MCS 2004, LNCS
3077, pp. 223-232, 2004.

66. S. Krause and R. Polikar, "An Ensemble Approach to the Missing Feature
Problem," Int. Joint Conf on Neural Net., vol. 1, pp. 553-558, Portland, OR,
2003.

67. H. Syed Mohammed, N. Steponosky and R. Polikar, "An Ensemble Technique to
Handle Missing Data from Sensors," IEEE Sensors Applications Symposium, TX,
2006.

68. C. Brodley and T. Lane, "Creating and Exploiting Coverage and Diversity," Proc.
AAAI-96 Workshop on Integrating Multiple Learned Models, pp. 8-14, 1996.

69. J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas, "On combining classifiers," IEEE
Trans. on PAM Int., vol. 20, no. 3, pp.226-239, 1998.

70. Y. Wu, E.Y. Chang, and W.C. Lai, "Optimal Multimodal Fusion for Multimedia
Data Analysis," ACM Int. Conf on Mutlimedia, pp. 564-571, 2004.

71. C.L. Blake, C. Merz, UCI Repository of machine learning databases:
http://www.ics.uci.edu/-mlearnI/MLRepository.html.

72. D.W. Wolpert and W.G. Macready, "No Free Lunch Theorems for Optimization,"
IEEE Trans. on Evol. Comp.,vol. 1, no. 1, 1997.

122

	Random feature subspace ensemble based approaches for the analysis of data with missing features
	Recommended Citation

	Random Feature Subspace Ensemble Based Approaches for the Analysis of Data With Missing Features (Rowan University 2006 Theses)

